Selected article for: "absolute error standard deviation and accurately estimate"

Author: Ibrahim, Bassem; Jafari, Roozbeh
Title: Continuous Blood Pressure Monitoring using Wrist-worn Bio-impedance Sensors with Wet Electrodes.
  • Cord-id: vin44x6q
  • Document date: 2018_1_1
  • ID: vin44x6q
    Snippet: Continuous blood pressure (BP) monitoring is essential for diagnosis and management of cardiovascular disorders. Currently, BP is measured using cuff-based methods, which are obtrusive and not suitable for continuous monitoring. Estimation of BP using pulse transit time (PTT) is a prominent method that eliminates the need for a cuff. In this paper, we present a new method to estimate BP based on PTT measurements from an array of 2×2 bio-impedance sensors placed on the wrist, which can be integr
    Document: Continuous blood pressure (BP) monitoring is essential for diagnosis and management of cardiovascular disorders. Currently, BP is measured using cuff-based methods, which are obtrusive and not suitable for continuous monitoring. Estimation of BP using pulse transit time (PTT) is a prominent method that eliminates the need for a cuff. In this paper, we present a new method to estimate BP based on PTT measurements from an array of 2×2 bio-impedance sensors placed on the wrist, which can be integrated into a small wearable device such as a smart watch for continuous BP monitoring. Diastolic and systolic BP were estimated using AdaBoost regression model based on PTT features extracted from the wrist bio-impedance signals. Data was collected from three participants using our custom bio-impedance sensors. Our method can estimate BP accurately with correlation coefficient, mean absolute error (MAE) and standard deviation (STD) of 0.92, 1.71 and 2.46 mmHg for the diastolic BP and 0.94, 2.57 and 4.35 mmHg for the systolic BP.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date