Selected article for: "cell line and host cell virus"

Author: Zheng, Zhiqiang; Monteil, Vanessa M.; Maurer-Stroh, Sebastian; Yew, Chow Wenn; Leong, Carol; Mohd-Ismail, Nur Khairiah; Arularasu, Suganya Cheyyatraivendran; Chow, Vincent Tak Kwong; Pin, Raymond Lin Tzer; Mirazimi, Ali; Hong, Wanjin; Tan, Yee-Joo
Title: Monoclonal antibodies for the S2 subunit of spike of SARS-CoV cross-react with the newly-emerged SARS-CoV-2
  • Cord-id: vu7u11yk
  • Document date: 2020_3_7
  • ID: vu7u11yk
    Snippet: The emergence of a novel coronavirus, SARS-CoV-2, at the end of 2019 has resulted in widespread human infections across the globe. While genetically distinct from SARS-CoV, the etiological agent that caused an outbreak of severe acute respiratory syndrome (SARS) in 2003, both coronaviruses exhibit receptor binding domain (RBD) conservation and utilize the same host cell receptor, angiotensin-converting enzyme 2 (ACE2), for virus entry. Therefore, it will be important to test the cross-reactivity
    Document: The emergence of a novel coronavirus, SARS-CoV-2, at the end of 2019 has resulted in widespread human infections across the globe. While genetically distinct from SARS-CoV, the etiological agent that caused an outbreak of severe acute respiratory syndrome (SARS) in 2003, both coronaviruses exhibit receptor binding domain (RBD) conservation and utilize the same host cell receptor, angiotensin-converting enzyme 2 (ACE2), for virus entry. Therefore, it will be important to test the cross-reactivity of antibodies that have been previously generated against the surface spike (S) glycoprotein of SARS-CoV in order to aid research on the newly emerged SARS-CoV-2. Here, we show that an immunogenic domain in the S2 subunit of SARS-CoV S is highly conserved in multiple strains of SARS-CoV-2. Consistently, four murine monoclonal antibodies (mAbs) raised against this immunogenic SARS-CoV fragment were able to recognise the S protein of SARS-CoV-2 expressed in a mammalian cell line. Importantly, one of them (mAb 1A9) was demonstrated to detect S in SARS-CoV-2-infected cells. To our knowledge, this is the first study showing that mAbs targeting the S2 domain of SARS-CoV can cross-react with SARS-CoV-2 and this observation is consistent with the high sequence conservation in the S2 subunit. These cross-reactive mAbs may serve as tools useful for SARS-CoV-2 research as well as for the development of diagnostic assays for its associated coronavirus disease COVID-19.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1