Author: Toğaçar, Mesut; Ergen, Burhan; Cömert, Zafer
Title: COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches Cord-id: w8cvq0m5 Document date: 2020_5_6
ID: w8cvq0m5
Snippet: Coronavirus causes a wide variety of respiratory infections and it is an RNA-type virus that can infect both humans and animal species. It often causes pneumonia in humans. Artificial intelligence models have been helpful for successful analyses in the biomedical field. In this study, Coronavirus was detected using a deep learning model, which is a sub-branch of artificial intelligence. Our dataset consists of three classes namely: coronavirus, pneumonia, and normal X-ray imagery. In this study,
Document: Coronavirus causes a wide variety of respiratory infections and it is an RNA-type virus that can infect both humans and animal species. It often causes pneumonia in humans. Artificial intelligence models have been helpful for successful analyses in the biomedical field. In this study, Coronavirus was detected using a deep learning model, which is a sub-branch of artificial intelligence. Our dataset consists of three classes namely: coronavirus, pneumonia, and normal X-ray imagery. In this study, the data classes were restructured using the Fuzzy Color technique as a preprocessing step and the images that were structured with the original images were stacked. In the next step, the stacked dataset was trained with deep learning models (MobileNetV2, SqueezeNet) and the feature sets obtained by the models were processed using the Social Mimic optimization method. Thereafter, efficient features were combined and classified using Support Vector Machines (SVM). The overall classification rate obtained with the proposed approach was 99.27%. With the proposed approach in this study, it is evident that the model can efficiently contribute to the detection of COVID-19 disease.
Search related documents:
Co phrase search for related documents- accurate fast and low efficiency: 1
Co phrase search for related documents, hyperlinks ordered by date