Selected article for: "broad range and clinical laboratory"

Author: Vieceli, Tarsila; Filho, Cilomar Martins de Oliveira; Berger, Mariana; Saadi, Marina Petersen; Salvador, Pedro Antonio; Anizelli, Leonardo Bressan; Crivelaro, Pedro Castilhos de Freitas; Butzke, Mauricio; Zappelini, Roberta de Souza; Seligma, Beatriz Graeff dos Santos; Seligman, Renato
Title: A predictive score for COVID-19 diagnosis using clinical, laboratory and chest image data
  • Cord-id: zpzdo0gk
  • Document date: 2020_7_25
  • ID: zpzdo0gk
    Snippet: OBJECTIVES: Differential diagnosis of COVID-19 includes a broad range of conditions. Prioritizing containment efforts, protective personal equipment and testing can be challenging. Our aim was to develop a tool to identify patients with higher probability of COVID-19 diagnosis at admission. METHODS: This cross-sectional study analyzed data from 100 patients admitted with suspected COVID-19. Predictive models of COVID-19 diagnosis were performed based on radiology, clinical and laboratory finding
    Document: OBJECTIVES: Differential diagnosis of COVID-19 includes a broad range of conditions. Prioritizing containment efforts, protective personal equipment and testing can be challenging. Our aim was to develop a tool to identify patients with higher probability of COVID-19 diagnosis at admission. METHODS: This cross-sectional study analyzed data from 100 patients admitted with suspected COVID-19. Predictive models of COVID-19 diagnosis were performed based on radiology, clinical and laboratory findings; bootstrapping was performed in order to account for overfitting. RESULTS: A total of 29% of patients tested positive for SARS-CoV-2. Variables associated with COVID-19 diagnosis in multivariate analysis were leukocyte count ≤7.7 × 10(3) mm(–3), LDH >273 U/L, and chest radiographic abnormality. A predictive score was built for COVID-19 diagnosis, with an area under ROC curve of 0.847 (95% CI 0.77–0.92), 96% sensitivity and 73.5% specificity. After bootstrapping, the corrected AUC for this model was 0.827 (95% CI 0.75–0.90). CONCLUSIONS: Considering unavailability of RT-PCR at some centers, as well as its questionable early sensitivity, other tools might be used in order to identify patients who should be prioritized for testing, re-testing and admission to isolated wards. We propose a predictive score that can be easily applied in clinical practice. This score is yet to be validated in larger populations.

    Search related documents:
    Co phrase search for related documents