Author: LI, Shu Gang; DING, Yu Song; NIU, Qiang; XU, Shang Zhi; PANG, Li Juan; MA, Ru Lin; JING, Ming Xia; FENG, Gang Ling; LIU, Jia Ming; GUO, Shu Xia
                    Title: Grape Seed Proanthocyanidin Extract Alleviates Arsenic-induced Oxidative Reproductive Toxicity in Male Mice  Cord-id: wtbu91hz  Document date: 2015_6_18
                    ID: wtbu91hz
                    
                    Snippet: OBJECTIVE: To determine the ability of grape seed proanthocyanidin extract (GSPE) in alleviating arsenic-induced reproductive toxicity. METHODS: Sixty male Kunming mice received the following treatments by gavage: normal saline solution (control); arsenic trioxide (ATO; 4 mg/kg); GSPE (400 mg/kg); ATO+GSPE (100 mg/kg); ATO+GSPE (200 mg/kg) and ATO+GSPE (400 mg/kg). Thereafter, the mice were sacrificed and weighed, and the testis was examined for pathological changes. Nuclear factor (erythroid-de
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: OBJECTIVE: To determine the ability of grape seed proanthocyanidin extract (GSPE) in alleviating arsenic-induced reproductive toxicity. METHODS: Sixty male Kunming mice received the following treatments by gavage: normal saline solution (control); arsenic trioxide (ATO; 4 mg/kg); GSPE (400 mg/kg); ATO+GSPE (100 mg/kg); ATO+GSPE (200 mg/kg) and ATO+GSPE (400 mg/kg). Thereafter, the mice were sacrificed and weighed, and the testis was examined for pathological changes. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), heme oxygenase 1 (HO1), glutathione S-transferase (GST), NAD(P)H dehydrogenase, and quinone 1 (NQO1) expression in the testis was detected by real-time PCR. Superoxide dismutase (SOD), glutathione (GSH), total antioxidative capability (T-AOC), malondialdehyde (MDA), 8-hydroxydeoxyguanosine (8-OHdG), and reproductive indexes were analyzed. RESULTS: ATO-treated mice showed a significantly decreased sperm count and testis somatic index and activity levels of SOD, GSH, and T-AOC than control group. Compared to the ATO-treated group, ATO +GSPE group showed recovery of the measured parameters. Mice treated with ATO+high-dose GSPE showed the highest level of mRNA expression of Nrf2, HO, NQO1, and GST. CONCLUSIONS: GSPE alleviates oxidative stress damage in mouse testis by activating Nrf2 signaling, thus counteracting arsenic-induced reproductive toxicity.
 
  Search related documents: 
                                Co phrase  search for related documents- Try single phrases listed below for: 1
  
 
                                Co phrase  search for related documents, hyperlinks ordered by date