Author: Gadlage, Mark J; Graham, Rachel L; Denison, Mark R
Title: Murine coronaviruses encoding nsp2 at different genomic loci have altered replication, protein expression, and localization. Cord-id: y64cv0u1 Document date: 2008_1_1
ID: y64cv0u1
Snippet: Partial or complete deletion of several coronavirus nonstructural proteins (nsps), including open reading frame 1a (ORF1a)-encoded nsp2, results in viable mutant proteins with specific replication defects. It is not known whether expression of nsps from alternate locations in the genome can complement replication defects. In this report, we show that the murine hepatitis virus nsp2 sequence was tolerated in ORF1b with an in-frame insertion between nsp13 and nsp14 and in place of ORF4. Alternate
Document: Partial or complete deletion of several coronavirus nonstructural proteins (nsps), including open reading frame 1a (ORF1a)-encoded nsp2, results in viable mutant proteins with specific replication defects. It is not known whether expression of nsps from alternate locations in the genome can complement replication defects. In this report, we show that the murine hepatitis virus nsp2 sequence was tolerated in ORF1b with an in-frame insertion between nsp13 and nsp14 and in place of ORF4. Alternate encoding or duplication of the nsp2 gene sequence resulted in differences in nsp2 expression, processing, and localization, was neutral or detrimental to replication, and did not complement an ORF1a Deltansp2 replication defect. The results suggest that wild-type genomic organization and expression of nsps are required for optimal replication.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date