Selected article for: "limited impact and SARS spread"

Author: Krauland, M. G.; Galloway, D. D.; Raviotta, J. M.; Zimmerman, R. K.; Roberts, M. S.
Title: Agent-based Investigation of the Impact of Low Rates of Influenza on Next Season Influenza Infections
  • Cord-id: ymwc00qi
  • Document date: 2021_8_24
  • ID: ymwc00qi
    Snippet: Introduction Interventions to curb the spread of SARS-CoV-2 during the 2020-21 influenza season essentially eliminated influenza during that season. Given waning antibody titers over time, future residual population immunity against influenza will be reduced. The implication for the subsequent 2021-22 influenza season is unknown. Methods We used an agent-based model of influenza implemented in the FRED (Framework for Reconstructing Epidemiological Dynamics) simulation platform to estimate cases
    Document: Introduction Interventions to curb the spread of SARS-CoV-2 during the 2020-21 influenza season essentially eliminated influenza during that season. Given waning antibody titers over time, future residual population immunity against influenza will be reduced. The implication for the subsequent 2021-22 influenza season is unknown. Methods We used an agent-based model of influenza implemented in the FRED (Framework for Reconstructing Epidemiological Dynamics) simulation platform to estimate cases and hospitalization over two succeeding influenza seasons. The model uses a synthetic population to represent an actual population, and individual interactions in workplaces, school, households and neighborhoods. The impact of reduced residual immunity was estimated as a consequence of increased protective measures (e.g., social distancing and school closure) in the first season. The impact was contrasted by the level of similarity (cross-immunity) between influenza strains over the seasons. Results When the second season strains were dissimilar to the first season (have a low level of cross immunity), a low first season has limited impact on second season cases. When a high level of cross-immunity exists between strains in the 2 seasons, the first season has a much greater impact on the second season. In both cases this is modified by the transmissibility of strains in the 2 seasons. In the context of the 2021-22 season, the worst case scenario is a highly transmissible strain causing increased cases and hospitalizations over average influenza seasons, with a possible significant increase in cases in some scenarios. The most likely overall scenario for 2021-22 is a more modest increase in flu cases over an average season. Discussion Given the light 2020-21 season, we found that a large, compensatory second season might occur in 2021-22, depending on cross-immunity from past infection and transmissibility of strains. Furthermore, we found that enhanced vaccine coverage could reduce this high, compensatory season. Young children may be especially at risk in 2021-22 since very young children were unlikely to have had any exposure to infection and most immunity in that age group would be from vaccination, which wanes quickly.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1