Author: Zhou, Ya-Qun; Liu, Dai-Qiang; Chen, Shu-Ping; Sun, Jia; Zhou, Xue-Rong; Xing, Cui; Ye, Da-Wei; Tian, Yu-Ke
Title: The Role of CXCR3 in Neurological Diseases Cord-id: xago1ts3 Document date: 2019_2_25
ID: xago1ts3
Snippet: BACKGROUND: Neurological diseases have become an obvious challenge due to insufficient therapeutic intervention. Therefore, novel drugs for various neurological disorders are in desperate need. Recently, compelling evidence has demon-strated that chemokine receptor CXCR3, which is a G protein-coupled receptor in the CXC chemokine receptor family, may play a pivotal role in the development of neurological diseases. The aim of this review is to provide evidence for the potential of CXCR3 as a ther
Document: BACKGROUND: Neurological diseases have become an obvious challenge due to insufficient therapeutic intervention. Therefore, novel drugs for various neurological disorders are in desperate need. Recently, compelling evidence has demon-strated that chemokine receptor CXCR3, which is a G protein-coupled receptor in the CXC chemokine receptor family, may play a pivotal role in the development of neurological diseases. The aim of this review is to provide evidence for the potential of CXCR3 as a therapeutic target for neurological diseases. METHODS: English journal articles that focused on the invovlement of CXCR3 in neurological diseases were searched via PubMed up to May 2017. Moreover, reference lists from identified articles were included for overviews. RESULTS: The expression level of CXCR3 in T cells was significantly elevated in several neurological diseases, including multiple sclerosis (MS), glioma, Alzheimer’s disease (AD), chronic pain, human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and bipolar disorder. CXCR3 antagonists showed therapeutic effects in these neurological diseases. CONCLUSION: These studies provided hard evidence that CXCR3 plays a vital role in the pathogenesis of MS, glioma, AD, chronic pain, HAM/TSP and bipolar disorder. CXCR3 is a crucial molecule in neuroinflammatory and neurodegenerative diseases. It regulates the activation of infiltrating cells and resident immune cells. However, the exact functions of CXCR3 in neurological diseases are inconclusive. Thus, it is important to understand the topic of chemokines and the scope of their ac-tivity in neurological diseases.
Search related documents:
Co phrase search for related documents- ad disease and ad patient: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- ad disease and ad therapeutic target: 1, 2, 3, 4, 5, 6, 7
- ad disease and ad therapeutic target potential: 1
- ad disease and ad transgenic mouse model: 1, 2
- ad pathogenesis and ad therapeutic target: 1, 2, 3
- ad pathogenesis and ad therapeutic target potential: 1
- ad pathogenesis and ad transgenic mouse model: 1
Co phrase search for related documents, hyperlinks ordered by date