Author: Mahmud, R.; Patwari, H. M. A. F.
Title: Estimation of the Basic Reproduction Number of SARS-CoV-2 in Bangladesh Using Exponential Growth Method Cord-id: xv7274vn Document date: 2020_9_29
ID: xv7274vn
Snippet: Objectives: In December 2019, a novel coronavirus (SARS-CoV-2) outbreak emerged in Wuhan, Hubei Province, China. Soon, it has spread out across the world and become an ongoing pandemic. In Bangladesh, the first case of novel coronavirus (SARS-CoV-2) was detected on March 8, 2020. Since then, not many significant studies have been conducted to understand the transmission dynamics of novel coronavirus (SARS-CoV-2) in Bangladesh. In this study, we estimated the basic reproduction number R 0 of nove
Document: Objectives: In December 2019, a novel coronavirus (SARS-CoV-2) outbreak emerged in Wuhan, Hubei Province, China. Soon, it has spread out across the world and become an ongoing pandemic. In Bangladesh, the first case of novel coronavirus (SARS-CoV-2) was detected on March 8, 2020. Since then, not many significant studies have been conducted to understand the transmission dynamics of novel coronavirus (SARS-CoV-2) in Bangladesh. In this study, we estimated the basic reproduction number R 0 of novel coronavirus (SARS-CoV-2) in Bangladesh. Methods: The data of daily confirmed cases of novel coronavirus (SARS-CoV-2) in Bangladesh and the reported values of generation time of novel coronavirus (SARS-CoV-2) for Singapore and Tianjin, China, were collected. We calculated the basic reproduction number R0 by applying the exponential growth (EG) method. Epidemic data of the first 76 days and different values of generation time were used for the calculation. Results: The basic reproduction number R0 of novel coronavirus (SARS-CoV-2) in Bangladesh is estimated to be 2.66 [95% CI: 2.58-2.75], optimized R0 is 2.78 [95% CI: 2.69-2.88] using generation time 5.20 with a standard deviation of 1.72 for Singapore. Using generation time 3.95 with a standard deviation of 1.51 for Tianjin, China, R0 is estimated to be 2.15 [95% CI: 2.09-2.20], optimized R0 is 2.22 [95% CI: 2.16-2.29]. Conclusions: The calculated basic reproduction number R0 of novel coronavirus (SARS-CoV-2) in Bangladesh is significantly higher than 1, which indicates its high transmissibility and contagiousness.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date