Selected article for: "abundant protein and acute respiratory syndrome"

Author: Zhu, Minsheng
Title: SARS Immunity and Vaccination.
  • Cord-id: xi73bzud
  • Document date: 2004_1_1
  • ID: xi73bzud
    Snippet: Severe acute respiratory syndrome (SARS) is a serious and fatal infectious disease caused by SARS coronavirus (SARS-Cov), a novel human coronavirus. SARS-Cov infection stimulates cytokines (e.g., IL-10, IFN-gamma, IL-1, etc.) expression dramatically, and T lymphocytes and their subsets CD4(+) and CD8(+) T cells are decreased after onset of the disease. SARS-specific IgG antibody is generated in the second week and persists for a long time, whereas IgM is expressed transiently. The spike protein
    Document: Severe acute respiratory syndrome (SARS) is a serious and fatal infectious disease caused by SARS coronavirus (SARS-Cov), a novel human coronavirus. SARS-Cov infection stimulates cytokines (e.g., IL-10, IFN-gamma, IL-1, etc.) expression dramatically, and T lymphocytes and their subsets CD4(+) and CD8(+) T cells are decreased after onset of the disease. SARS-specific IgG antibody is generated in the second week and persists for a long time, whereas IgM is expressed transiently. The spike protein and neucleocapsid protein are most abundant in SARS-Cov and contribute dominantly to the antibody production during the course of disease. Spike protein, especially the ACE-2 binding region (318-510aa) is capable of producing neutralizing antibody to SARS-Cov. Neucleocapsid protein induces protective specific CTL to SARS-Cov. Therefore, applications with spike subunit, neucleocapsid subunit as well as inactivated SARS-Cov are three prospective vaccination strategies for SARS.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date