Author: Emeny, Rebecca T; Carpenter, David O; Lawrence, David A
Title: Health disparities: Intracellular consequences of social determinants of health. Cord-id: z76wnv1s Document date: 2021_2_4
ID: z76wnv1s
Snippet: Health disparities exist dependent on socioeconomic status, living conditions, race/ethnicity, diet, and exposures to environmental pollutants. Herein, the various exposures contributing to a person's exposome are collectively considered social determinants of health (SDOH), and the SDOH-exposome impacts health more than health care. This scoping review discusses the extent of evidence of the physiologic consequences of these exposures, often referred to as the exposome, at the intracellular lev
Document: Health disparities exist dependent on socioeconomic status, living conditions, race/ethnicity, diet, and exposures to environmental pollutants. Herein, the various exposures contributing to a person's exposome are collectively considered social determinants of health (SDOH), and the SDOH-exposome impacts health more than health care. This scoping review discusses the extent of evidence of the physiologic consequences of these exposures, often referred to as the exposome, at the intracellular level. We consider how the SDOH-exposome, which captures how individuals live, work and age, induces cell processes that modulate a conceptual "redox rheostat." Like an electrical resistor, the SDOH-exposome, along with genetic predisposition and age, regulate reductive and oxidative (redox) stress circuits and thereby stimulate inflammation. Regardless of the source of the SDOH-exposome that induces chronic inflammation and immunosenescence, the outcome influences cardiometabolic diseases, cancers, infections, sepsis, neurodegeneration and autoimmune diseases. The endogenous redox rheostat is connected with regulatory molecules such as NAD+/NADH and SIRT1 that drive redox pathways. In addition to these intracellular and mitochondrial processes, we discuss how the SDOH-exposome can influence the balance between metabolism and regulation of immune responsiveness involving the two main molecular drivers of inflammation, the NLRP3 inflammasome and NF-κB induction. Mitochondrial and inflammasome activities play key roles in mediating defenses against pathogens and controlling inflammation before diverse cell death pathways are induced. Specifically, pyroptosis, cell death by inflammation, is intimately associated with common disease outcomes that are influenced by the SDOH-exposome. Redox influences on immunometabolism including protein cysteines and ion fluxes are discussed regarding health outcomes. In summary, this review presents a translational research perspective, with evidence from in vitro and in vivo models as well as clinical and epidemiological studies, to outline the intracellular consequences of the SDOH-exposome that drive health disparities in patients and populations. The relevance of this conceptual and theoretical model considering the SARS-CoV-2 pandemic are highlighted. Finally, the case of asthma is presented as a chronic condition that is modified by adverse SDOH exposures and is manifested through the dysregulation of immune cell redox regulatory process we highlight in this review.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date