Author: Sivaprakasam, Vasanthi; Hart, Matthew B.
Title: Surface-Enhanced Raman Spectroscopy for Environmental Monitoring of Aerosols Cord-id: z5hqt1ur Document date: 2021_4_6
ID: z5hqt1ur
Snippet: [Image: see text] Surface-enhanced Raman spectroscopy (SERS) is conducted from single aerosol particles held in a linear electrodynamic quadrupole trap. SERS measurements from two representative types of ambient aerosol particles, semi-liquid and solid aerosols, are demonstrated; aerosol composed of adenine where the metallic nanoparticles (MNPs) are volume distributed throughout the particle and aerosol composed of polystyrene latex (PSL) beads where the MNPs are surface coated. An enhancement
Document: [Image: see text] Surface-enhanced Raman spectroscopy (SERS) is conducted from single aerosol particles held in a linear electrodynamic quadrupole trap. SERS measurements from two representative types of ambient aerosol particles, semi-liquid and solid aerosols, are demonstrated; aerosol composed of adenine where the metallic nanoparticles (MNPs) are volume distributed throughout the particle and aerosol composed of polystyrene latex (PSL) beads where the MNPs are surface coated. An enhancement factor > 10(6) is demonstrated from 5 μm aerosols containing trace amounts of adenine (0.1% by mass), with a detection limit of 10(–8) M corresponding to 5 × 10(5) molecules (equivalent to 100 ag in mass or a 50 nm diameter sphere), and a ratio of 100 adenine molecules per Ag NP. SERS signal intensities are linear with particle adenine concentration up to a saturation point. Both the linearity and enhancement factor were confirmed by SERS measurements of adenine as bulk suspensions. The SERS spectra of adenine as bulk suspensions were explored as a function of excitation wavelength ranging from 400 to 800 nm. The two main Raman peaks of adenine at 738 and 1336 cm(–1) exhibit SERS maxima for excitation in the 450–500 nm range for commercially available 40 nm spherical Ag nanoparticles (NPs) used in this study, which shifts to longer wavelengths with the addition of NaCl. Shifts in SERS and spontaneous Raman shifts were observed between aqueous and dry adenine, in agreement with the literature, demonstrating the utility of SERS to possibly study water uptake of aerosols. SERS is measured from MNP surface-coated PSL beads with an enhancement factor of 30 for 5 μm PSLs. Theoretical extrapolation demonstrates that the enhancement factor will increase for decreasing particle size with an estimated enhancement factor of 140 for 1 μm PSLs.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date