Author: Liu, Biao; Shankar, Neelaabh; Turner, Douglas H.
                    Title: Fluorescence Competition Assay Measurements of Free Energy Changes for RNA Pseudoknots  Cord-id: zwgnkegf  Document date: 2009_11_18
                    ID: zwgnkegf
                    
                    Snippet: [Image: see text] RNA pseudoknots have important functions, and thermodynamic stability is a key to predicting pseudoknots in RNA sequences and to understanding their functions. Traditional methods, such as UV melting and differential scanning calorimetry, for measuring RNA thermodynamics are restricted to temperature ranges around the melting temperature for a pseudoknot. Here, we report RNA pseudoknot free energy changes at 37 °C measured by fluorescence competition assays. Sequence-dependent
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: [Image: see text] RNA pseudoknots have important functions, and thermodynamic stability is a key to predicting pseudoknots in RNA sequences and to understanding their functions. Traditional methods, such as UV melting and differential scanning calorimetry, for measuring RNA thermodynamics are restricted to temperature ranges around the melting temperature for a pseudoknot. Here, we report RNA pseudoknot free energy changes at 37 °C measured by fluorescence competition assays. Sequence-dependent studies for the loop 1−stem 2 region reveal (1) the individual nearest-neighbor hydrogen bonding (INN-HB) model provides a reasonable estimate for the free energy change when a Watson−Crick base pair in stem 2 is changed, (2) the loop entropy can be estimated by a statistical polymer model, although some penalty for certain loop sequences is necessary, and (3) tertiary interactions can significantly stabilize pseudoknots and extending the length of stem 2 may alter tertiary interactions such that the INN-HB model does not predict the net effect of adding a base pair. The results can inform writing of algorithms for predicting and/or designing RNA secondary structures.
 
  Search related documents: 
                                Co phrase  search for related documents- Try single phrases listed below for: 1
  
 
                                Co phrase  search for related documents, hyperlinks ordered by date