Selected article for: "cell culture and nuclear localization"

Author: Hussain, Snawar; Gallagher, Tom
Title: SARS-Coronavirus Protein 6 Conformations Required to Impede Protein Import into the Nucleus
  • Cord-id: wm27coad
  • Document date: 2010_11_1
  • ID: wm27coad
    Snippet: The severe acute respiratory syndrome coronavirus (SARS-CoV) genome encodes eight accessory proteins. Accessory protein 6 is a 63-residue amphipathic peptide that accelerates coronavirus infection kinetics in cell culture and in mice. Protein 6 is minimally bifunctional, with an N-terminal lipophilic part implicated in accelerating viral growth and a C-terminal hydrophilic part interfering with general protein import into the nucleus. This interference with nuclear import requires interaction be
    Document: The severe acute respiratory syndrome coronavirus (SARS-CoV) genome encodes eight accessory proteins. Accessory protein 6 is a 63-residue amphipathic peptide that accelerates coronavirus infection kinetics in cell culture and in mice. Protein 6 is minimally bifunctional, with an N-terminal lipophilic part implicated in accelerating viral growth and a C-terminal hydrophilic part interfering with general protein import into the nucleus. This interference with nuclear import requires interaction between protein 6 and cellular karyopherins, a process that typically involves nuclear localization signal (NLS) motifs. Here we dissected protein 6 using site-directed mutagenesis and found no evidence for a classical NLS. Furthermore, we found that the C-terminal tail of protein 6 impeded nuclear import only in the context of a lipophilic N-terminus, which could be derived from membrane proteins unrelated to protein 6. These findings are discussed in the context of the proposed protein 6 structure.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1