Author: Abbott, Timothy R.; Dhamdhere, Girija; Liu, Yanxia; Lin, Xueqiu; Goudy, Laine; Zeng, Leiping; Chemparathy, Augustine; Chmura, Stephen; Heaton, Nicholas S.; Debs, Robert; Pande, Tara; Endy, Drew; La Russa, Marie; Lewis, David B.; Qi, Lei S.
                    Title: Development of CRISPR as a prophylactic strategy to combat novel coronavirus and influenza  Cord-id: xieqswct  Document date: 2020_3_14
                    ID: xieqswct
                    
                    Snippet: The outbreak of the coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), has infected more than 100,000 people worldwide with over 3,000 deaths since December 2019. There is no cure for COVID-19 and the vaccine development is estimated to require 12-18 months. Here we demonstrate a CRISPR-Cas13-based strategy, PAC-MAN (Prophylactic Antiviral CRISPR in huMAN cells), for viral inhibition that can effectively degrade SARS-CoV-2 sequences a
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: The outbreak of the coronavirus disease 2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), has infected more than 100,000 people worldwide with over 3,000 deaths since December 2019. There is no cure for COVID-19 and the vaccine development is estimated to require 12-18 months. Here we demonstrate a CRISPR-Cas13-based strategy, PAC-MAN (Prophylactic Antiviral CRISPR in huMAN cells), for viral inhibition that can effectively degrade SARS-CoV-2 sequences and live influenza A virus (IAV) genome in human lung epithelial cells. We designed and screened a group of CRISPR RNAs (crRNAs) targeting conserved viral regions and identified functional crRNAs for cleaving SARS-CoV-2. The approach is effective in reducing respiratory cell viral replication for H1N1 IAV. Our bioinformatic analysis showed a group of only six crRNAs can target more than 90% of all coronaviruses. The PAC-MAN approach is potentially a rapidly implementable pan-coronavirus strategy to deal with emerging pandemic strains.
 
  Search related documents: 
                                Co phrase  search for related documents- acute respiratory syndrome and live viral infection: 1, 2
  - acute respiratory syndrome and low viral titer: 1, 2, 3
  - acute respiratory syndrome and lung epithelial cell: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47
  - acute respiratory syndrome and lung epithelial cell culture: 1
  - acute respiratory syndrome and mafft sequence: 1, 2, 3
  - acute respiratory syndrome coronavirus and live cell imaging: 1, 2, 3, 4, 5, 6
  - acute respiratory syndrome coronavirus and live viral infection: 1, 2
  - acute respiratory syndrome coronavirus and low viral titer: 1, 2, 3
  - acute respiratory syndrome coronavirus and lung epithelial cell: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
  - acute respiratory syndrome coronavirus and mafft sequence: 1, 2, 3
  - live cell imaging and lung epithelial cell: 1
  
 
                                Co phrase  search for related documents, hyperlinks ordered by date