Author: Tavakoli, Sajad; Ghaffari, Ali; Kouzehkanan, Zahra Mousavi; Hosseini, Reshad
Title: New Segmentation and Feature Extraction Algorithm for Classification of White Blood Cells in Peripheral Smear Images Cord-id: yjzgqc09 Document date: 2021_5_31
ID: yjzgqc09
Snippet: This article addresses a new method for the classification of white blood cells (WBCs) using image processing techniques and machine learning methods. The proposed method consists of three steps: detecting the nucleus and cytoplasm, extracting features, and classification. At first, a new algorithm is designed to segment the nucleus. For the cytoplasm to be detected, only a part of it located inside the convex hull of the nucleus is involved in the process. This attitude helps us overcome the di
Document: This article addresses a new method for the classification of white blood cells (WBCs) using image processing techniques and machine learning methods. The proposed method consists of three steps: detecting the nucleus and cytoplasm, extracting features, and classification. At first, a new algorithm is designed to segment the nucleus. For the cytoplasm to be detected, only a part of it located inside the convex hull of the nucleus is involved in the process. This attitude helps us overcome the difficulties of segmenting the cytoplasm. In the second phase, three shapes and four novel color features are devised and extracted. Finally, by using an SVM model, the WBCs are classified. The segmentation algorithm can detect the nucleus with a dice similarity coefficient of 0.9675. The proposed method can categorize WBCs in Raabin-WBC, LISC, and BCCD datasets with accuracies of 94.65 %, 92.21 %, and 94.20 %, respectively. It is worth mentioning that the hyperparameters of the classifier are fixed only with the Raabin-WBC dataset, and these parameters are not readjusted for LISC and BCCD datasets. The obtained results demonstrate that the proposed method is robust, fast, and accurate.
Search related documents:
Co phrase search for related documents- accuracy acc and long short term: 1, 2, 3
- accuracy acc and machine learning: 1, 2, 3, 4, 5, 6
- accurate method and local binary pattern: 1
- accurate method and long short term: 1, 2
- accurate method and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- accurate method and machine learning technique: 1, 2, 3
- acute lymphoblastic leukemia and lymphoblastic leukemia: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
- acute lymphoblastic leukemia and machine learning: 1
- acute myelogenous leukemia and lymphoblastic leukemia: 1, 2
- local binary pattern and machine learning: 1, 2, 3, 4, 5, 6, 7
- long short term and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- long short term and machine learning technique: 1, 2, 3, 4, 5
- lymphoblastic leukemia and machine learning: 1
Co phrase search for related documents, hyperlinks ordered by date