Author: Ding, Hongwei; Chen, Leiyang; Tao, Qi; Fu, Zhongwang; Dong, Liang; Cui, Xiaohui
Title: DCU-Net: a dual-channel U-shaped network for image splicing forgery detection Cord-id: yy9f0op5 Document date: 2021_8_12
ID: yy9f0op5
Snippet: The detection and location of image splicing forgery are a challenging task in the field of image forensics. It is to study whether an image contains a suspicious tampered area pasted from another image. In this paper, we propose a new image tamper location method based on dual-channel U-Net, that is, DCU-Net. The detection framework based on DCU-Net is mainly divided into three parts: encoder, feature fusion, and decoder. Firstly, high-pass filters are used to extract the residual of the tamper
Document: The detection and location of image splicing forgery are a challenging task in the field of image forensics. It is to study whether an image contains a suspicious tampered area pasted from another image. In this paper, we propose a new image tamper location method based on dual-channel U-Net, that is, DCU-Net. The detection framework based on DCU-Net is mainly divided into three parts: encoder, feature fusion, and decoder. Firstly, high-pass filters are used to extract the residual of the tampered image and generate the residual image, which contains the edge information of the tampered area. Secondly, a dual-channel encoding network model is constructed. The input of the model is the original tampered image and the tampered residual image. Then, the deep features extracted from the dual-channel encoding network are fused for the first time, and then the tampered features with different granularity are extracted by dilation convolution, and then, the secondary fusion is carried out. Finally, the fused feature map is input into the decoder, and the predicted image is decoded layer by layer. The experimental results on Casia2.0 and Columbia datasets show that DCU-Net performs better than the latest algorithm and can accurately locate tampered areas. In addition, the attack experiments show that DCU-Net model has good robustness and can resist noise and JPEG recompression attacks.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date