Selected article for: "immune signaling and small rna"

Author: Ulanova, Marina; Schreiber, Alan D.; Befus, A. Dean
Title: The Future of Antisense Oligonucleotides in the Treatment of Respiratory Diseases
  • Cord-id: z103k5zn
  • Document date: 2012_8_13
  • ID: z103k5zn
    Snippet: Antisense oligonucleotides (ASO) are short synthetic DNA molecules designed to inhibit translation of a targeted gene to protein via interaction with messenger RNA. More recently, small interfering (si)RNA have been developed as potent tools to specifically inhibit gene expression. ASO directed against signaling molecules, cytokine receptors, and transcription factors involved in allergic immune and inflammatory responses, have been applied in experimental models of asthma and demonstrate potent
    Document: Antisense oligonucleotides (ASO) are short synthetic DNA molecules designed to inhibit translation of a targeted gene to protein via interaction with messenger RNA. More recently, small interfering (si)RNA have been developed as potent tools to specifically inhibit gene expression. ASO directed against signaling molecules, cytokine receptors, and transcription factors involved in allergic immune and inflammatory responses, have been applied in experimental models of asthma and demonstrate potential as therapeutics. Several ASO-based drugs directed against oncogenes have been developed for therapy of lung cancer, and some have recently reached clinical trials. ASO and siRNA to respiratory syncytial virus infection have demonstrated good potential to treat this condition, particularly in combination with an antiviral drug. Although ASO-based therapeutics are promising for lung diseases, issues of specificity, identification of correct molecular targets, delivery and carrier systems, as well as potential adverse effects must be carefully evaluated before clinical application.

    Search related documents:
    Co phrase search for related documents
    • action mechanisms and acute lung injury: 1, 2, 3, 4, 5, 6, 7, 8
    • action mechanisms and acute respiratory distress syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
    • action mechanisms and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • action mechanisms and additional effect: 1
    • activator signal transducer and acute lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
    • activator signal transducer and acute respiratory distress syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
    • activator signal transducer and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute respiratory distress syndrome and additional effect: 1, 2, 3, 4
    • acute respiratory syndrome and additional effect: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11