Author: Bahadur Gurung, Arun; Ajmal Ali, Mohammad; Lee, Joongku; Abul Farah, Mohammad; Mashay Al-Anazi, Khalid; Al-Hemaid, Fahad
Title: Identification of SARS-CoV-2 inhibitors from extracts of Houttuynia cordata Thunb Cord-id: 0j53vg0k Document date: 2021_9_6
ID: 0j53vg0k
Snippet: Houttuynia cordata Thunb., a perennial herb belonging to the Saururaceae family is a well-known ingredient of Traditional Chinese medicine (TCM) with several therapeutic properties. During the severe acute respiratory syndrome (SARS) outbreak in China, it was one of the approved ingredients in SARS preventative formulations and therefore, the plant may contain novel bioactive chemicals that can be used to suppress the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a
Document: Houttuynia cordata Thunb., a perennial herb belonging to the Saururaceae family is a well-known ingredient of Traditional Chinese medicine (TCM) with several therapeutic properties. During the severe acute respiratory syndrome (SARS) outbreak in China, it was one of the approved ingredients in SARS preventative formulations and therefore, the plant may contain novel bioactive chemicals that can be used to suppress the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus for which there are currently no effective drugs available. Like all RNA viruses, SARS-CoV-2 encode RNA-dependent RNA polymerase (RdRp) enzyme which aids viral gene transcription and replication. The present study is aimed at understanding the potential of bioactive compounds from H. cordata as inhibitors of the SARS-CoV-2 RdRp enzyme. We investigated the drug-likeness of the plant's active constituents, such as alkaloids, polyphenols, and flavonoids, as well as their binding affinity for the RdRp enzyme. Molecular docking experiments show that compounds 3 (1,2,3,4,5-pentamethoxy-dibenzo-quinolin-7-one), 14 (7-oxodehydroasimilobine), and 21 (1,2-dimethoxy-3-hydroxy-5-oxonoraporphine) have a high affinity for the drug target and that the complexes are maintained by hydrogen bonds with residues like Arg553, Cys622 and Asp623, as well as hydrophobic interactions with other residues. The lead compounds' complexes with the target enzyme remained stable throughout the molecular dynamics simulation. Analysis of molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) and molecular mechanics generalized Born surface area (MM-GBSA) revealed the key residues contributing considerably to binding free energy. Thus, the findings reveal the potential of H. cordata bioactive compounds as anti-SARS-CoV-2 drug candidate molecules against the target enzyme.
Search related documents:
Co phrase search for related documents- active component and acute sars cov respiratory syndrome coronavirus: 1, 2, 3, 4, 5
- active component and long history: 1
- active component and low binding: 1
- active constituent and acute respiratory syndrome: 1, 2
- acute respiratory syndrome and adenosine analogue: 1, 2, 3, 4
- acute respiratory syndrome and adp adrp ribose phosphatase: 1, 2, 3, 4
- acute respiratory syndrome and adrp ribose phosphatase: 1, 2, 3, 4
- acute respiratory syndrome and long history: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and low binding: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute sars cov respiratory syndrome coronavirus and adenosine analogue: 1, 2, 3
- acute sars cov respiratory syndrome coronavirus and adp adrp ribose phosphatase: 1, 2, 3, 4
- acute sars cov respiratory syndrome coronavirus and adrp ribose phosphatase: 1, 2, 3, 4
- acute sars cov respiratory syndrome coronavirus and long history: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- acute sars cov respiratory syndrome coronavirus and low binding: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
- adp adrp ribose phosphatase and adrp ribose phosphatase: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
Co phrase search for related documents, hyperlinks ordered by date