Selected article for: "incubation time and recovery time"

Author: Sarma, U.; Ghosh, B.
Title: Quantitative modeling and analysis show country-specific quarantine measures can circumvent COVID19 infection spread post lockdown
  • Cord-id: 29kudfjp
  • Document date: 2020_5_26
  • ID: 29kudfjp
    Snippet: The outbreak of COVID19 has been declared a global pandemic by WHO which started in Wuhan last November and now has spread to more than 200 countries with 4.5 million cases and a death toll of more than 300 thousand. In response, many countries have implemented lock down to ensure social distancing and started rigorously quarantining the infected subjects. Here we utilized the infection dynamics available from WHO and quantitatively calibrated the confirmed, recovered, and dead populations from
    Document: The outbreak of COVID19 has been declared a global pandemic by WHO which started in Wuhan last November and now has spread to more than 200 countries with 4.5 million cases and a death toll of more than 300 thousand. In response, many countries have implemented lock down to ensure social distancing and started rigorously quarantining the infected subjects. Here we utilized the infection dynamics available from WHO and quantitatively calibrated the confirmed, recovered, and dead populations from 23 different countries. The chosen countries chosen are in three stages of infection 1. Where the first wave of infection is significantly diminished 2. Infection peak is reached but daily infection still persists significantly 3. The infection peak is not yet reached. The model successfully captured the daily trajectories of countries with both early and late phase of infection and determined incubation time, transmission rate, quarantine and recovery rates. Our analysis shows, the reduction in the estimated reproduction number with time is significantly correlated to the testing rate and medical facility of a country. Further, our model identifies that an increase in quarantine rate through more testing could be the most potent strategy to substantially reduce the undetected infection, accelerate the time to infection peak and facilitate faster recovery of a nation from the first infection wave, which could perhaps have direct social and economic implications. Our model also shows, that post lockdown infection spread towards a much larger second wave can be controlled via rigorous increase in the quarantine rates which could be tailored in a country specific manner; for instance, our simulations suggest that USA or Spain would require a 10 fold more increase in quarantine rates compared to India to control the second wave post lockdown. Our data driven modeling and analysis of the trajectories from multiple countries thus pave a way to understand the infection dynamics during and post lockdown phases in various countries and it can help strategize the testing and quarantine processes and influence the spread of the disease in future.

    Search related documents: