Author: Lee, Tzu-Han; Wu, David; Guzy, Robert; Schoettler, Nathan; Adegunsoye, Ayodeji; Mueller, Jeffrey; Hussein, Aliya; Sperling, Anne; Mutlu, Gökhan M.; Fang, Yun
Title: SARS-CoV-2 infection reduces Krüppel-Like Factor 2 in human lung autopsy Cord-id: 2ccj1nia Document date: 2021_1_18
ID: 2ccj1nia
Snippet: Acute respiratory distress syndrome (ARDS) occurred in ~12% of hospitalized COVID-19 patients in a recent New York City cohort. Pulmonary endothelial dysfunction, characterized by increased expression of inflammatory genes and increased monolayer permeability, is a major component of ARDS. Vascular leak results in parenchymal accumulation of leukocytes, protein, and extravascular water, leading to pulmonary edema, ischemia, and activation of coagulation associated with COVID-19. Endothelial infl
Document: Acute respiratory distress syndrome (ARDS) occurred in ~12% of hospitalized COVID-19 patients in a recent New York City cohort. Pulmonary endothelial dysfunction, characterized by increased expression of inflammatory genes and increased monolayer permeability, is a major component of ARDS. Vascular leak results in parenchymal accumulation of leukocytes, protein, and extravascular water, leading to pulmonary edema, ischemia, and activation of coagulation associated with COVID-19. Endothelial inflammation further contributes to uncontrolled cytokine storm in ARDS. We have recently demonstrated that Krüppel-like factor 2 (KLF2), a transcription factor which promotes endothelial quiescence and monolayer integrity, is significantly reduced in experimental models of ARDS. Lung inflammation and high-tidal volume ventilation result in reduced KLF2, leading to pulmonary endothelial dysfunction and acute lung injury. Mechanistically, we found that KLF2 is a potent transcriptional activator of Rap guanine nucleotide exchange factor 3 (RAPGEF3) which orchestrates and maintains vascular integrity. Moreover, KLF2 regulates multiple genome-wide association study (GWAS)-implicated ARDS genes. Whether lung KLF2 is regulated by SARS-CoV-2 infection is unknown. Here we report that endothelial KLF2 is significantly reduced in human lung autopsies from COVID-19 patients, which supports that ARDS due to SARS-CoV-2 is a vascular phenotype possibly attributed to KLF2 down-regulation. We provide additional data demonstrating that KLF2 is down-regulated in SARS-CoV infection in mice.
Search related documents:
Co phrase search for related documents- acute ards respiratory distress syndrome and lung autopsy: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- acute ards respiratory distress syndrome and lung endothelial: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute ards respiratory distress syndrome and lung inflammation: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute ards respiratory distress syndrome and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute ards respiratory distress syndrome and lung microvascular: 1, 2, 3
- acute ards respiratory distress syndrome and lung tissue: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute hypoxemic respiratory failure and lung autopsy: 1
- acute hypoxemic respiratory failure and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- acute hypoxemic respiratory failure and lung tissue: 1, 2, 3
- acute lung injury and lps lipopolysaccharide: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute lung injury and lps lipopolysaccharide h1n1 virus influenza induce: 1
- acute lung injury and lung autopsy: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- acute lung injury and lung endothelial: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute lung injury and lung inflammation: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute lung injury and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute lung injury and lung microvascular: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- acute lung injury and lung tissue: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- lps lipopolysaccharide and lung endothelial: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- lps lipopolysaccharide and lung inflammation: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Co phrase search for related documents, hyperlinks ordered by date