Author: Marquès, Montse; Correig, Eudald; Ibarretxe, Daiana; Anoro, Eva; Antonio Arroyo, Juan; Jericó, Carlos; Borrallo, Rosa M.; Miret, Marcel·la; Näf, Silvia; Pardo, Anna; Perea, Verónica; Pérez-Bernalte, Rosa; RamÃrez-Montesinos, Rafael; Royuela, Meritxell; Soler, Cristina; Urquizu-Padilla, Maria; Zamora, Alberto; Pedro-Botet, Juan; Masana, LluÃs; Domingo, José L.
Title: Long-term exposure to PM(10) above WHO guidelines exacerbates COVID-19 severity and mortality Cord-id: 2ioi602j Document date: 2021_10_16
ID: 2ioi602j
Snippet: BACKGROUND: Age, sex, race and comorbidities are insufficient to explain why some individuals remain asymptomatic after SARS-CoV-2 infection, while others die. In this sense, the increased risk caused by the long-term exposure to air pollution is being investigated to understand the high heterogeneity of the COVID-19 infection course. OBJECTIVES: We aimed to assess the underlying effect of long-term exposure to NO(2) and PM(10) on the severity and mortality of COVID-19. METHODS: A retrospective
Document: BACKGROUND: Age, sex, race and comorbidities are insufficient to explain why some individuals remain asymptomatic after SARS-CoV-2 infection, while others die. In this sense, the increased risk caused by the long-term exposure to air pollution is being investigated to understand the high heterogeneity of the COVID-19 infection course. OBJECTIVES: We aimed to assess the underlying effect of long-term exposure to NO(2) and PM(10) on the severity and mortality of COVID-19. METHODS: A retrospective observational study was conducted with 2112 patients suffering COVID-19 infection. We built two sets of multivariate predictive models to assess the relationship between the long-term exposure to NO(2) and PM(10) and COVID-19 outcome. First, the probability of either death or severe COVID-19 outcome was predicted as a function of all the clinical variables together with the pollutants exposure by means of two regularized logistic regressions. Subsequently, two regularized linear regressions were constructed to predict the percentage of dead or severe patients. Finally, odds ratios and effects estimates were calculated. RESULTS: We found that the long-term exposure to PM(10) is a more important variable than some already stated comorbidities (i.e.: COPD/Asthma, diabetes, obesity) in the prediction of COVID-19 severity and mortality. PM(10) showed the highest effects estimates (1.65, 95% CI 1.32–2.06) on COVID-19 severity. For mortality, the highest effect estimates corresponded to age (3.59, 95% CI 2.94–4.40), followed by PM(10) (2.37, 95% CI 1.71–3.32). Finally, an increase of 1 µg/m(3) in PM(10) concentration causes an increase of 3.06% (95% CI 1.11%-4.25%) of patients suffering COVID-19 as a severe disease and an increase of 2.68% (95% CI 0.53%-5.58%) of deaths. DISCUSSION: These results demonstrate that long-term PM(10) burdens above WHO guidelines exacerbate COVID-19 health outcomes. Hence, WHO guidelines, the air quality standard established by the Directive 2008/50/EU, and that of the US-EPA should be updated accordingly to protect human health.
Search related documents:
Co phrase search for related documents- acute respiratory sars syndrome coronavirus and admit hospital: 1, 2
- acute respiratory sars syndrome coronavirus and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory sars syndrome coronavirus and long exposure: 1, 2, 3, 4, 5, 6, 7, 8, 9
- acute respiratory sars syndrome coronavirus and long term exposure: 1, 2, 3, 4, 5, 6, 7
- acute respiratory sars syndrome coronavirus and low concentration: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory sars syndrome coronavirus and low importance: 1, 2, 3, 4
- admission hospital and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- admission hospital and long exposure: 1, 2
- admission hospital and long term exposure: 1, 2
- admission hospital and low concentration: 1
- admit hospital and logistic regression: 1
- logistic regression and long exposure: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- logistic regression and long term exposure: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- logistic regression and low concentration: 1, 2, 3
- logistic regression and low importance: 1, 2, 3, 4, 5, 6, 7, 8
- long exposure and low concentration: 1
- long exposure and low importance: 1
- long term exposure and low concentration: 1
- long term exposure and low importance: 1
Co phrase search for related documents, hyperlinks ordered by date