Selected article for: "data set and rate ratio"

Author: Pollack, Catherine C; Gilbert-Diamond, Diane; Alford-Teaster, Jennifer A; Onega, Tracy
Title: Language and Sentiment Regarding Telemedicine and COVID-19 on Twitter: Longitudinal Infodemiology Study
  • Cord-id: 378xtw77
  • Document date: 2021_6_21
  • ID: 378xtw77
    Snippet: BACKGROUND: The COVID-19 pandemic has necessitated a rapid shift in how individuals interact with and receive fundamental services, including health care. Although telemedicine is not a novel technology, previous studies have offered mixed opinions surrounding its utilization. However, there exists a dearth of research on how these opinions have evolved over the course of the current pandemic. OBJECTIVE: This study aims to evaluate how the language and sentiment surrounding telemedicine has evol
    Document: BACKGROUND: The COVID-19 pandemic has necessitated a rapid shift in how individuals interact with and receive fundamental services, including health care. Although telemedicine is not a novel technology, previous studies have offered mixed opinions surrounding its utilization. However, there exists a dearth of research on how these opinions have evolved over the course of the current pandemic. OBJECTIVE: This study aims to evaluate how the language and sentiment surrounding telemedicine has evolved throughout the COVID-19 pandemic. METHODS: Tweets published between January 1, 2020, and April 24, 2021, containing at least one telemedicine-related and one COVID-19–related search term (“telemedicine-COVID”) were collected from the Twitter full archive search (N=351,718). A comparator sample containing only COVID-19 terms (“general-COVID”) was collected and sampled based on the daily distribution of telemedicine-COVID tweets. In addition to analyses of retweets and favorites, sentiment analysis was performed on both data sets in aggregate and within a subset of tweets receiving the top 100 most and least retweets. RESULTS: Telemedicine gained prominence during the early stages of the pandemic (ie, March through May 2020) before leveling off and reaching a steady state from June 2020 onward. Telemedicine-COVID tweets had a 21% lower average number of retweets than general-COVID tweets (incidence rate ratio 0.79, 95% CI 0.63-0.99; P=.04), but there was no difference in favorites. A majority of telemedicine-COVID tweets (180,295/351,718, 51.3%) were characterized as “positive,” compared to only 38.5% (135,434/351,401) of general-COVID tweets (P<.001). This trend was also true on a monthly level from March 2020 through April 2021. The most retweeted posts in both telemedicine-COVID and general-COVID data sets were authored by journalists and politicians. Whereas the majority of the most retweeted posts within the telemedicine-COVID data set were positive (55/101, 54.5%), a plurality of the most retweeted posts within the general-COVID data set were negative (44/89, 49.4%; P=.01). CONCLUSIONS: During the COVID-19 pandemic, opinions surrounding telemedicine evolved to become more positive, especially when compared to the larger pool of COVID-19–related tweets. Decision makers should capitalize on these shifting public opinions to invest in telemedicine infrastructure and ensure its accessibility and success in a postpandemic world.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date