Author: Sheykhivand, Sobhan; Mousavi, Zohreh; Mojtahedi, Sina; Yousefi Rezaii, Tohid; Farzamnia, Ali; Meshgini, Saeed; Saad, Ismail
Title: Developing an Efficient Deep Neural Network for Automatic Detection of COVID-19 Using Chest X-ray Images Cord-id: 3tqzk4m7 Document date: 2021_1_21
ID: 3tqzk4m7
Snippet: The novel coronavirus (COVID-19) could be described as the greatest human challenge of the 21st century. The development and transmission of the disease have increased mortality in all countries. Therefore, a rapid diagnosis of COVID-19 is necessary to treat and control the disease. In this paper, a new method for the automatic identification of pneumonia (including COVID-19) is presented using a proposed deep neural network. In the proposed method, the chest X-ray images are used to separate 2
Document: The novel coronavirus (COVID-19) could be described as the greatest human challenge of the 21st century. The development and transmission of the disease have increased mortality in all countries. Therefore, a rapid diagnosis of COVID-19 is necessary to treat and control the disease. In this paper, a new method for the automatic identification of pneumonia (including COVID-19) is presented using a proposed deep neural network. In the proposed method, the chest X-ray images are used to separate 2 to 4 classes in 7 different and functional scenarios according to healthy, viral, bacterial, and COVID-19 classes. In the proposed architecture, Generative Adversarial Networks (GANs) are used together with a fusion of the deep transfer learning and LSTM networks, without involving feature extraction/selection for classification of pneumonia. We have achieved more than 90% accuracy for all scenarios except one and also achieved 99% accuracy for separating COVID-19 from healthy group. We also compared our deep proposed network with other deep transfer learning networks (including Inception-ResNet V2, Inception V4, VGG16 and MobileNet) that have been recently widely used in pneumonia detection studies. The results based on the proposed network were very promising in terms of accuracy, precision, sensitivity, and specificity compared to the other deep transfer learning approaches. Depending on the high performance of the proposed method, it can be used during the treatment of patients.
Search related documents:
Co phrase search for related documents- accuracy increase and loss function: 1, 2
- accuracy increase and low accuracy: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- accuracy increase and low contrast: 1
- accuracy increase and low diagnosis: 1
- accuracy increase and lstm network: 1
- accuracy increase and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
- accuracy increase and machine learning field: 1
- accuracy sensitivity and activation function: 1, 2, 3
- accuracy sensitivity and long short term memory: 1, 2, 3, 4, 5, 6, 7
- accuracy sensitivity and loss function: 1, 2, 3, 4, 5, 6, 7, 8, 9
- accuracy sensitivity and low accuracy: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- accuracy sensitivity and low diagnosis: 1, 2, 3, 4, 5, 6
- accuracy sensitivity and low diagnosis accuracy: 1
- accuracy sensitivity and lstm network: 1, 2, 3
- accuracy sensitivity and lstm network cnn: 1, 2
- accuracy sensitivity and lstm network cnn combination: 1, 2
- accuracy sensitivity and lung infection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- accuracy sensitivity and lung pneumonia infection: 1, 2
- accuracy sensitivity and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
Co phrase search for related documents, hyperlinks ordered by date