Author: Neamțu, Bogdan Mihai; Visa, Gabriela; Maniu, Ionela; Ognean, Maria Livia; Pérez-Elvira, Rubén; Dragomir, Andrei; Agudo, Maria; Șofariu, Ciprian Radu; Gheonea, Mihaela; Pitic, Antoniu; Brad, Remus; Matei, Claudiu; Teodoru, Minodora; Băcilă, Ciprian
Title: A Decision-Tree Approach to Assist in Forecasting the Outcomes of the Neonatal Brain Injury Cord-id: 4k3ixk8t Document date: 2021_4_30
ID: 4k3ixk8t
Snippet: Neonatal brain injury or neonatal encephalopathy (NE) is a significant morbidity and mortality factor in preterm and full-term newborns. NE has an incidence in the range of 2.5 to 3.5 per 1000 live births carrying a considerable burden for neurological outcomes such as epilepsy, cerebral palsy, cognitive impairments, and hydrocephaly. Many scoring systems based on different risk factor combinations in regression models have been proposed to predict abnormal outcomes. Birthweight, gestational age
Document: Neonatal brain injury or neonatal encephalopathy (NE) is a significant morbidity and mortality factor in preterm and full-term newborns. NE has an incidence in the range of 2.5 to 3.5 per 1000 live births carrying a considerable burden for neurological outcomes such as epilepsy, cerebral palsy, cognitive impairments, and hydrocephaly. Many scoring systems based on different risk factor combinations in regression models have been proposed to predict abnormal outcomes. Birthweight, gestational age, Apgar scores, pH, ultrasound and MRI biomarkers, seizures onset, EEG pattern, and seizure duration were the most referred predictors in the literature. Our study proposes a decision-tree approach based on clinical risk factors for abnormal outcomes in newborns with the neurological syndrome to assist in neonatal encephalopathy prognosis as a complementary tool to the acknowledged scoring systems. We retrospectively studied 188 newborns with associated encephalopathy and seizures in the perinatal period. Etiology and abnormal outcomes were assessed through correlations with the risk factors. We computed mean, median, odds ratios values for birth weight, gestational age, 1-min Apgar Score, 5-min Apgar score, seizures onset, and seizures duration monitoring, applying standard statistical methods first. Subsequently, CART (classification and regression trees) and cluster analysis were employed, further adjusting the medians. Out of 188 cases, 84 were associated to abnormal outcomes. The hierarchy on etiology frequencies was dominated by cerebrovascular impairments, metabolic anomalies, and infections. Both preterms and full-terms at risk were bundled in specific categories defined as high-risk 75–100%, intermediate risk 52.9%, and low risk 0–25% after CART algorithm implementation. Cluster analysis illustrated the median values, profiling at a glance the preterm model in high-risk groups and a full-term model in the inter-mediate-risk category. Our study illustrates that, in addition to standard statistics methodologies, decision-tree approaches could provide a first-step tool for the prognosis of the abnormal outcome in newborns with encephalopathy.
Search related documents:
Co phrase search for related documents- acute phase and loading dose: 1
- acute phase and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35
- acute phase and long term outcome: 1, 2, 3, 4, 5, 6, 7, 8, 9
- acute phase and machine learning: 1, 2, 3, 4, 5, 6, 7, 8
- additional information and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- additional information and long term outcome: 1
- additional information and low income: 1, 2, 3, 4, 5, 6, 7, 8, 9
- additional information and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- additional information and machine learning technique: 1
- logistic regression and long term outcome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- logistic regression and low apgar score: 1, 2, 3, 4, 5, 6
- logistic regression and low income: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- logistic regression and low income country: 1, 2, 3, 4
- logistic regression and low intermediate: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- logistic regression and low intermediate high: 1, 2, 3, 4, 5, 6, 7, 8
- logistic regression and low risk category: 1, 2
- logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
- logistic regression and machine learning technique: 1, 2, 3
- low income and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Co phrase search for related documents, hyperlinks ordered by date