Author: Saha, Prottoy; Sadi, Muhammad Sheikh; Islam, Md Milon
Title: EMCNet: Automated COVID-19 diagnosis from X-ray images using convolutional neural network and ensemble of machine learning classifiers Cord-id: 4lvqi983 Document date: 2020_12_22
ID: 4lvqi983
Snippet: Recently, coronavirus disease (COVID-19) has caused a serious effect on the healthcare system and the overall global economy. Doctors, researchers, and experts are focusing on alternative ways for the rapid detection of COVID-19, such as the development of automatic COVID-19 detection systems. In this paper, an automated detection scheme named EMCNet was proposed to identify COVID-19 patients by evaluating chest X-ray images. A convolutional neural network was developed focusing on the simplicit
Document: Recently, coronavirus disease (COVID-19) has caused a serious effect on the healthcare system and the overall global economy. Doctors, researchers, and experts are focusing on alternative ways for the rapid detection of COVID-19, such as the development of automatic COVID-19 detection systems. In this paper, an automated detection scheme named EMCNet was proposed to identify COVID-19 patients by evaluating chest X-ray images. A convolutional neural network was developed focusing on the simplicity of the model to extract deep and high-level features from X-ray images of patients infected with COVID-19. With the extracted features, binary machine learning classifiers (random forest, support vector machine, decision tree, and AdaBoost) were developed for the detection of COVID-19. Finally, these classifiers’ outputs were combined to develop an ensemble of classifiers, which ensures better results for the dataset of various sizes and resolutions. In comparison with other recent deep learning-based systems, EMCNet showed better performance with 98.91% accuracy, 100% precision, 97.82% recall, and 98.89% F1-score. The system could maintain its great importance on the automatic detection of COVID-19 through instant detection and low false negative rate.
Search related documents:
Co phrase search for related documents- activation relu and machine learning: 1, 2
- active case and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41
- active case and machine learning: 1
- actual case and machine learning: 1, 2
- actual class and machine learning: 1
- acute respiratory and additional layer: 1, 2, 3, 4, 5
- acute respiratory and local structure: 1, 2, 3, 4, 5, 6, 7
- acute respiratory and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- acute respiratory and machine learning ml model: 1
- acute respiratory and machine learning work: 1, 2, 3, 4
- additional layer and local structure: 1
- additional layer and machine learning: 1, 2
- local structure and machine learning: 1, 2, 3, 4
- long feature vector and machine learning: 1
- long feature vector and machine learning work: 1
Co phrase search for related documents, hyperlinks ordered by date