Selected article for: "bacterial growth and growth rate"

Author: Li, Yan; Leung, Wai Kin; Yeung, King Lun; Lau, Pui Sang; Kwan, Joseph K C
Title: A multilevel antimicrobial coating based on polymer-encapsulated ClO(2).
  • Cord-id: 4tfg54yi
  • Document date: 2009_1_1
  • ID: 4tfg54yi
    Snippet: A multilevel antimicrobial coating with "release-killing", "contact-killing" and "anti-adhesion" properties was prepared from polymer-encapsulated chlorine dioxide (ClO(2)), water-in-oil-in-water (w/o/w) double emulsion. A slow sustained release of gaseous ClO(2) at a rate sufficient to inhibit bacterial growth (approximately 1300 microg of ClO(2).g(-1).day(-1)) was demonstrated for a prolonged period of time (i.e., 28 days). Touch and infectious droplets triggered an increased release of the bi
    Document: A multilevel antimicrobial coating with "release-killing", "contact-killing" and "anti-adhesion" properties was prepared from polymer-encapsulated chlorine dioxide (ClO(2)), water-in-oil-in-water (w/o/w) double emulsion. A slow sustained release of gaseous ClO(2) at a rate sufficient to inhibit bacterial growth (approximately 1300 microg of ClO(2).g(-1).day(-1)) was demonstrated for a prolonged period of time (i.e., 28 days). Touch and infectious droplets triggered an increased release of the biocides at the sites of contamination, resulting in rapid disinfection. Zinc chloride (i.e., 30 ppm) was added to provide "contact-killing" properties, while bacterial adhesion was prevented by the Pluronic polymer used to encapsulate ClO(2). The new antimicrobial coating is effective against Gram positive and Gram negative bacteria, including Bacillus subtilis , Staphylococcus aureus , and Escherichia coli. A greater than 5 log (i.e., >or= 99.999%) reduction of viable bacteria was obtained at a short contact time of 10 min.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date