Author: Momeni-Boroujeni, Amir; Mendoza, Rachelle; Stopard, Isaac J.; Lambert, Ben; Zuretti, Alejandro
Title: A Dynamic Bayesian Model for Identifying High-Mortality Risk in Hospitalized COVID-19 Patients Cord-id: 6i3eg1mj Document date: 2021_3_18
ID: 6i3eg1mj
Snippet: As Coronavirus Disease 2019 (COVID-19) hospitalization rates remain high, there is an urgent need to identify prognostic factors to improve patient outcomes. Existing prognostic models mostly consider the impact of biomarkers at presentation on the risk of a single patient outcome at a single follow up time. We collected data for 553 Polymerase Chain Reaction (PCR)-positive COVID-19 patients admitted to hospital whose eventual outcomes were known. The data collected for the patients included dem
Document: As Coronavirus Disease 2019 (COVID-19) hospitalization rates remain high, there is an urgent need to identify prognostic factors to improve patient outcomes. Existing prognostic models mostly consider the impact of biomarkers at presentation on the risk of a single patient outcome at a single follow up time. We collected data for 553 Polymerase Chain Reaction (PCR)-positive COVID-19 patients admitted to hospital whose eventual outcomes were known. The data collected for the patients included demographics, comorbidities and laboratory values taken at admission and throughout the course of hospitalization. We trained multivariate Markov prognostic models to identify high-risk patients at admission along with a dynamic measure of risk incorporating time-dependent changes in patients’ laboratory values. From the set of factors available upon admission, the Markov model determined that age >80 years, history of coronary artery disease and chronic obstructive pulmonary disease increased mortality risk. The lab values upon admission most associated with mortality included neutrophil percentage, red blood cells (RBC), red cell distribution width (RDW), protein levels, platelets count, albumin levels and mean corpuscular hemoglobin concentration (MCHC). Incorporating dynamic changes in lab values throughout hospitalization lead to dramatic gains in the predictive accuracy of the model and indicated a catalogue of variables for determining high-risk patients including eosinophil percentage, white blood cells (WBC), platelets, pCO2, RDW, large unstained cells (LUC) count, alkaline phosphatase and albumin. Our prognostic model highlights the nuance of determining risk for COVID-19 patients and indicates that, rather than a single variable, a range of factors (at different points in hospitalization) are needed for effective risk stratification.
Search related documents:
Co phrase search for related documents- acute ards respiratory distress syndrome and admission available: 1, 2, 3, 4
- acute ards respiratory distress syndrome and admission day: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35
- acute ards respiratory distress syndrome and admission profile: 1
- acute ards respiratory distress syndrome and admission regression: 1, 2, 3
- acute ards respiratory distress syndrome and admission set: 1, 2
- acute ards respiratory distress syndrome and admission test: 1, 2, 3, 4, 5
- acute ards respiratory distress syndrome and admission value: 1, 2, 3
- acute ards respiratory distress syndrome and logistic model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- acute ards respiratory distress syndrome and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute ards respiratory distress syndrome and logistic regression analysis: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- acute ards respiratory distress syndrome and long increase: 1, 2
- acute ards respiratory distress syndrome and low mortality: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- acute ards respiratory distress syndrome and low mortality risk: 1, 2
- acute ards respiratory distress syndrome and lymphocyte percentage: 1, 2, 3, 4, 5, 6
- acute ards respiratory distress syndrome and lymphopenia procalcitonin: 1
- acutely ill and admission available: 1
- acutely ill and admission day: 1, 2
- acutely ill and logistic model: 1
- acutely ill and logistic regression: 1, 2, 3, 4, 5, 6, 7
Co phrase search for related documents, hyperlinks ordered by date