Selected article for: "detection algorithm and significantly improve"

Author: Radecki, Pierce; Uppuluri, Rahul; Aviran, Sharon
Title: Rapid structure-function insights via hairpin-centric analysis of big RNA structure probing datasets
  • Cord-id: 6r839y8c
  • Document date: 2021_8_24
  • ID: 6r839y8c
    Snippet: The functions of RNA are often tied to its structure, hence analyzing structure is of significant interest when studying cellular processes. Recently, large-scale structure probing (SP) studies have enabled assessment of global structure-function relationships via standard data summarizations or local folding. Here, we approach structure quantification from a hairpin-centric perspective where putative hairpins are identified in SP datasets and used as a means to capture local structural effects.
    Document: The functions of RNA are often tied to its structure, hence analyzing structure is of significant interest when studying cellular processes. Recently, large-scale structure probing (SP) studies have enabled assessment of global structure-function relationships via standard data summarizations or local folding. Here, we approach structure quantification from a hairpin-centric perspective where putative hairpins are identified in SP datasets and used as a means to capture local structural effects. This has the advantage of rapid processing of big (e.g. transcriptome-wide) data as RNA folding is circumvented, yet it captures more information than simple data summarizations. We reformulate a statistical learning algorithm we previously developed to significantly improve precision of hairpin detection, then introduce a novel nucleotide-wise measure, termed the hairpin-derived structure level (HDSL), which captures local structuredness by accounting for the presence of likely hairpin elements. Applying HDSL to data from recent studies recapitulates, strengthens and expands on their findings which were obtained by more comprehensive folding algorithms, yet our analyses are orders of magnitude faster. These results demonstrate that hairpin detection is a promising avenue for global and rapid structure-function analysis, furthering our understanding of RNA biology and the principal features which drive biological insights from SP data.

    Search related documents:
    Co phrase search for related documents
    • absence presence and local level: 1, 2
    • absence presence and local mean: 1
    • absence presence and local structure: 1
    • absence presence and location identify: 1
    • absence presence and long range: 1
    • absence presence and loop hairpin: 1, 2
    • absence presence and low medium high: 1, 2
    • absence presence and low nucleotide: 1
    • absence presence and low resolution: 1
    • absence presence and low sensitivity: 1, 2, 3, 4, 5, 6, 7