Author: Hossain, M. Z.; Uddin, M. B.; Ahmed, K. A.
Title: CovidEnvelope: A Fast Automated Approach to Diagnose COVID-19 from Cough Signals Cord-id: 9lvf4jfr Document date: 2021_4_20
ID: 9lvf4jfr
Snippet: The COVID-19 pandemic has a devastating impact on the health and well-being of global population. Cough audio signals classification showed potential as a screening approach for diagnosing people, infected with COVID-19. Recent approaches need costly deep learning algorithms or sophisticated methods to extract informative features from cough audio signals. In this paper, we propose a low-cost envelope approach, called CovidEnvelope, which can classify COVID-19 positive and negative cases from ra
Document: The COVID-19 pandemic has a devastating impact on the health and well-being of global population. Cough audio signals classification showed potential as a screening approach for diagnosing people, infected with COVID-19. Recent approaches need costly deep learning algorithms or sophisticated methods to extract informative features from cough audio signals. In this paper, we propose a low-cost envelope approach, called CovidEnvelope, which can classify COVID-19 positive and negative cases from raw data by avoiding above disadvantages. This automated approach can pre-process cough audio signals by filter-out background noises, generate an envelope around the audio signal, and finally provide outcomes by computing area enclosed by the envelope. It has been seen that reliable datasets are also important for achieving high performance. Our approach proves that human verbal confirmation is not a reliable source of information. Finally, the approach reaches highest sensitivity, specificity, accuracy, and AUC of 0.92, 0.87, 0.89, and 0.89 respectively. The automatic approach only takes 1.8 to 3.9 minutes to compute these performances. Overall, this approach is fast and sensitive to diagnose the people living with COVID-19, regardless of having COVID-19 related symptoms or not, and thus have vast applicability in human well-being by designing HCI devices incorporating this approach.
Search related documents:
Co phrase search for related documents- absence confirm and acute respiratory syndrome coronavirus: 1
- absence presence and absolute difference: 1
- absence presence and acid detection: 1
- absence presence and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- absence presence and acute respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- absence presence and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- absence presence regardless and acute respiratory: 1, 2, 3
- absence presence regardless and acute respiratory syndrome coronavirus: 1, 2, 3
- absolute difference and accuracy threshold: 1
- absolute difference and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- absolute difference and acute respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- absolute difference and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- accordingly describe and acute respiratory: 1
- accordingly describe and acute respiratory syndrome coronavirus: 1
- accuracy threshold and acute respiratory: 1
- accuracy threshold and acute respiratory syndrome coronavirus: 1
- accuracy threshold and logistic regression: 1
- acid detection and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acid detection and acute respiratory syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Co phrase search for related documents, hyperlinks ordered by date