Author: Vazquez-Chanlatte, Marcell; Seshia, Sanjit A.
Title: Maximum Causal Entropy Specification Inference from Demonstrations Cord-id: benlo6l3 Document date: 2020_6_16
ID: benlo6l3
Snippet: In many settings, such as robotics, demonstrations provide a natural way to specify tasks. However, most methods for learning from demonstrations either do not provide guarantees that the learned artifacts can be safely composed or do not explicitly capture temporal properties. Motivated by this deficit, recent works have proposed learning Boolean task specifications, a class of Boolean non-Markovian rewards which admit well-defined composition and explicitly handle historical dependencies. This
Document: In many settings, such as robotics, demonstrations provide a natural way to specify tasks. However, most methods for learning from demonstrations either do not provide guarantees that the learned artifacts can be safely composed or do not explicitly capture temporal properties. Motivated by this deficit, recent works have proposed learning Boolean task specifications, a class of Boolean non-Markovian rewards which admit well-defined composition and explicitly handle historical dependencies. This work continues this line of research by adapting maximum causal entropy inverse reinforcement learning to estimate the posteriori probability of a specification given a multi-set of demonstrations. The key algorithmic insight is to leverage the extensive literature and tooling on reduced ordered binary decision diagrams to efficiently encode a time unrolled Markov Decision Process. This enables transforming a naïve algorithm with running time exponential in the episode length, into a polynomial time algorithm.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date