Author: Xie, X.; Gjorgjieva, T.; Attieh, Z.; Dieng, M. M.; Arnoux, M.; Khair, M.; Moussa, Y.; Al Jallaf, F.; Rahiman, N.; Jackson, C. A.; Victoria, Z.; Zafar, M.; Ali, R.; Piano, F.; Gunsalus, K. C.; Idaghdour, Y.
Title: Microfluidic nano-scale qPCR enables ultra-sensitive detection of SARS-CoV-2 Cord-id: br2ncb2c Document date: 2020_9_1
ID: br2ncb2c
Snippet: Background: A major challenge in controlling the COVID-19 pandemic is the high false-negative rate of the commonly used standard RT-PCR methods for SARS-CoV-2 detection in clinical samples. Accurate detection is particularly challenging in samples with low viral loads that are below the limit of detection (LoD) of standard one- or two-step RT-PCR methods. Methods: We implement a three-step approach for SARS-CoV-2 detection and quantification that employs reverse transcription, targeted cDNA prea
Document: Background: A major challenge in controlling the COVID-19 pandemic is the high false-negative rate of the commonly used standard RT-PCR methods for SARS-CoV-2 detection in clinical samples. Accurate detection is particularly challenging in samples with low viral loads that are below the limit of detection (LoD) of standard one- or two-step RT-PCR methods. Methods: We implement a three-step approach for SARS-CoV-2 detection and quantification that employs reverse transcription, targeted cDNA preamplification and nano-scale qPCR based on the Fluidigm 192.24 microfluidic chip. We validate the method using both positive controls and nasopharyngeal swab samples. Results: Using SARS-CoV-2 synthetic RNA and plasmid controls, we demonstrate that the addition of a preamplification step enhances the LoD of the Fluidigm method by 1,000-fold, enabling detection below 1 copy/l. We applied this method to analyze 182 clinical NP swab samples previously diagnosed using a standard RT-qPCR protocol (91 positive, 91 negative) and demonstrate reproducible detection of SARS-CoV-2 over five orders of magnitude (< 1 to 106 viral copies/l). Crucially, we detect SARS-CoV-2 with relatively low viral load estimates (<1 to 40 viral copies/l) in 17 samples with negative clinical diagnosis, indicating a potential false negative rate of 18.7% by clinical diagnostic procedures. Conclusion: The three-step nano-scale RT-qPCR method can robustly detect SARS-CoV-2 in samples with relatively low viral loads (< 1 viral copy/l) and has the potential to reduce the false negative rate of standard RT-PCR-based diagnostic tests for SARS-CoV-2 and other viral infections.
Search related documents:
Co phrase search for related documents- lod detection and log linear: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date