Selected article for: "performance evaluation and precision specificity sensitivity accuracy"

Author: M. Bahgat, Waleed; Magdy Balaha, Hossam; AbdulAzeem, Yousry; Badawy, Mahmoud M.
Title: An optimized transfer learning-based approach for automatic diagnosis of COVID-19 from chest x-ray images
  • Cord-id: ffn3h67q
  • Document date: 2021_5_27
  • ID: ffn3h67q
    Snippet: Accurate and fast detection of COVID-19 patients is crucial to control this pandemic. Due to the scarcity of COVID-19 testing kits, especially in developing countries, there is a crucial need to rely on alternative diagnosis methods. Deep learning architectures built on image modalities can speed up the COVID-19 pneumonia classification from other types of pneumonia. The transfer learning approach is better suited to automatically detect COVID-19 cases due to the limited availability of medical
    Document: Accurate and fast detection of COVID-19 patients is crucial to control this pandemic. Due to the scarcity of COVID-19 testing kits, especially in developing countries, there is a crucial need to rely on alternative diagnosis methods. Deep learning architectures built on image modalities can speed up the COVID-19 pneumonia classification from other types of pneumonia. The transfer learning approach is better suited to automatically detect COVID-19 cases due to the limited availability of medical images. This paper introduces an Optimized Transfer Learning-based Approach for Automatic Detection of COVID-19 (OTLD-COVID-19) that applies an optimization algorithm to twelve CNN architectures to diagnose COVID-19 cases using chest x-ray images. The OTLD-COVID-19 approach adapts Manta-Ray Foraging Optimization (MRFO) algorithm to optimize the network hyperparameters’ values of the CNN architectures to improve their classification performance. The proposed dataset is collected from eight different public datasets to classify 4-class cases (COVID-19, pneumonia bacterial, pneumonia viral, and normal). The experimental result showed that DenseNet121 optimized architecture achieves the best performance. The evaluation results based on Loss, Accuracy, F1-score, Precision, Recall, Specificity, AUC, Sensitivity, IoU, and Dice values reached 0.0523, 98.47%, 0.9849, 98.50%, 98.47%, 99.50%, 0.9983, 0.9847, 0.9860, and 0.9879 respectively.

    Search related documents:
    Co phrase search for related documents
    • abnormal image and acute sars respiratory syndrome: 1
    • accuracy enhance and achieve accuracy: 1, 2
    • accuracy enhance and acute sars respiratory syndrome: 1, 2
    • accuracy value and acute sars respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
    • achieve accuracy and activation function: 1
    • achieve accuracy and acute sars respiratory syndrome: 1, 2, 3, 4, 5
    • achieve result and acute sars respiratory syndrome: 1
    • activation function and acute sars respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12