Selected article for: "acute respiratory infection and live vaccine candidate"

Author: Schickli, Jeanne H; Kaur, Jasmine; MacPhail, Mia; Guzzetta, Jeanne M; Spaete, Richard R; Tang, Roderick S
Title: Deletion of human metapneumovirus M2-2 increases mutation frequency and attenuates growth in hamsters
  • Cord-id: gy2b7of9
  • Document date: 2008_6_3
  • ID: gy2b7of9
    Snippet: BACKGROUND: Human metapneumovirus (hMPV) infection can cause acute lower respiratory tract illness in infants, the immunocompromised, and the elderly. Currently there are no licensed preventative measures for hMPV infections. Using a variant of hMPV/NL/1/00 that does not require trypsin supplementation for growth in tissue culture, we deleted the M2-2 gene and evaluated the replication of rhMPV/ΔM2-2 virus in vitro and in vivo. RESULTS: In vitro studies showed that the ablation of M2-2 increase
    Document: BACKGROUND: Human metapneumovirus (hMPV) infection can cause acute lower respiratory tract illness in infants, the immunocompromised, and the elderly. Currently there are no licensed preventative measures for hMPV infections. Using a variant of hMPV/NL/1/00 that does not require trypsin supplementation for growth in tissue culture, we deleted the M2-2 gene and evaluated the replication of rhMPV/ΔM2-2 virus in vitro and in vivo. RESULTS: In vitro studies showed that the ablation of M2-2 increased the propensity for insertion of U nucleotides in poly-U tracts of the genomic RNA. In addition, viral transcription was up-regulated although the level of genomic RNA remained comparable to rhMPV. Thus, deletion of M2-2 alters the ratio between hMPV genome copies and transcripts. In vivo, rhMPV/ΔM2-2 was attenuated compared to rhMPV in the lungs and nasal turbinates of hamsters. Hamsters immunized with one dose of rhMPV/ΔM2-2 were protected from challenge with 10(6 )PFU of wild type (wt) hMPV/NL/1/00. CONCLUSION: Our results suggest that hMPV M2-2 alters regulation of transcription and influences the fidelity of the polymerase complex during viral genome replication. In the hamster model, rhMPVΔM2-2 is attenuated and protective suggesting that deletion of M2-2 may result in a potential live vaccine candidate. A more thorough knowledge of the hMPV polymerase complex and the role of M2-2 during hMPV replication are being studied as we develop a potential live hMPV vaccine candidate that lacks M2-2 expression.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1