Author: Siddiqa, M A.; Rao, D. S.; Suvarna, G.; Chennamachetty, V. K.; Verma, M. K.; Rao, M. V. R.
Title: In-Silico Drug Designing of Spike Receptor with Its ACE2 Receptor and Nsp10/Nsp16 MTase Complex Against SARS-CoV-2 Cord-id: isbbsece Document date: 2021_3_17
ID: isbbsece
Snippet: The realm Riboviria constitutes Coronaviruses, which led to the emergence of the pandemic COVID 19 in the twenty-first century affected millions of lives. At present, the management of COVID 19 largely depends on antiviral therapeutics along with the anti-inflammatory drug. The vaccine is under the final clinical phase, and emergency use is available. We aim at ACE2 and Nsp10/Nsp16 MTase as potential drug candidate in COVID 19 management in the present work. For drug designing, various computati
Document: The realm Riboviria constitutes Coronaviruses, which led to the emergence of the pandemic COVID 19 in the twenty-first century affected millions of lives. At present, the management of COVID 19 largely depends on antiviral therapeutics along with the anti-inflammatory drug. The vaccine is under the final clinical phase, and emergency use is available. We aim at ACE2 and Nsp10/Nsp16 MTase as potential drug candidate in COVID 19 management in the present work. For drug designing, various computational simulation strategies have been employed like Swiss-Model, Hawk Dock, HDOCK, py Dock, and PockDrug for homology modeling, binding energies of the molecule with a target, simulate the conformation and binding poses, statistics of protein lock with target key and drug ability, respectively. The current in-silico screening depicts that the spike protein receptor is complementary to the target when bound to each other and forms a stable complex. The MMGBSA free energy binding property of receptor and ligand is critical. The intermolecular Statistics with the target Nsp10/Nsp16 MTase complex are plausible. We have also observed a high-affinity pocket binding site with the target. Therefore, the favorable intermolecular interactions and Physico-chemical properties emanate as a drug candidate treating COVID-19. This study has approached computational tools to analyze the conformation, binding affinity, and drug ability of receptor-ligand. Thus, the spike receptor with its ACE2 receptor with Nsp10/Nsp16 MTase complex would be a potent drug against SARS CoV-2 and can cure the infection as per consensus scoring.
Search related documents:
Co phrase search for related documents- acceptable accuracy and acute respiratory syndrome: 1, 2, 3
- access gain and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
Co phrase search for related documents, hyperlinks ordered by date