Selected article for: "high rate and present work"

Author: Davis, D.; Areeda, J. S.; Berger, B. K.; Bruntz, R.; Effler, A.; Essick, R. C.; Fisher, R. P.; Godwin, P.; Goetz, E.; Helmling-Cornell, A. F.; Hughey, B.; Katsavounidis, E.; Lundgren, A. P.; Macleod, D. M.; M'arka, Z.; Massinger, T. J.; Matas, A.; McIver, J.; Mo, G.; Mogushi, K.; Nguyen, P.; Nuttall, L. K.; Schofield, R. M. S.; Shoemaker, D. H.; Soni, S.; Stuver, A. L.; Urban, A. L.; Valdes, G.; Walker, M.; Abbott, R.; Adams, C.; Adhikari, R. X.; Ananyeva, A.; Appert, S.; Arai, K.; Asali, Y.; Aston, S. M.; Austin, C.; Baer, A. M.; Ball, M.; Ballmer, S. W.; Banagiri, S.; Barker, D.; Barschaw, C.; Barsotti, L.; Bartlett, J.; Betzwieser, J.; Beda, R.; Bhattacharjee, D.; Bidler, J.; Billingsley, G.; Biscans, S.; Blair, C. D.; Blair, R. M.; Bode, N.; Booker, P.; Bork, R.; Bramley, A.; Brooks, A. F.; Brown, D. D.; Buikema, A.; Cahillane, C.; Callister, T. A.; Santoro, G. Caneva; Cannon, K. C.; Carlin, J.; Chandra, K.; Chen, X.; Christensen, N.; Ciobanu, A. A.; Clara, F.; Compton, C. M.; Cooper, S. J.; Corley, K. R.; Coughlin, M. W.; Countryman, S. T.; Covas, P. B.; Coyne, D. C.; Crowder, S. G.; Canton, T. Dal; Danila, B.; Datrier, L. E. H.; Davies, G. S.; Dent, T.; Didio, N. A.; Fronzo, C. Di; Dooley, K. L.; Driggers, J. C.; Dupej, P.; Dwyer, S. E.; Etzel, T.; Evans, M.; Evans, T. M.; Fairhurst, S.; Feicht, J.; Fernandez-Galiana, A.; Frey, R.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gadre, B. U.; Giaime, J. A.; Giardina, K. D.; Gonz'alez, G.; Gras, S.; Gray, C.; Gray, R.; Green, A. C.; Gupta, A.; Gustafson, E. K.; Gustafson, R.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, I. W.; Hasskew, R. K.; Heintze, M. C.; Heinzel, J.; Holland, N. A.; Hollows, I. J.; Hoy, C. G.; Hughey, S.; Jadhav, S. J.; Janssens, K.; Johns, G.; Jones, J. D.; Kandhasamy, S.; Karki, S.; Kasprzack, M.; Kawabe, K.; Keitel, D.; Kijbunchoo, N.; Kim, Y. M.; King, P. J.; Kissel, J. S.; Kulkarni, S.; Kumar, Rahul; Landry, M.; Lane, B. B.; Lantz, B.; Laxen, M.; Lecoeuche, Y. K.; Leviton, J.; Liu, J.; Lormand, M.; Macas, R.; Macedo, A.; MacInnis, M.; Mandic, V.; Mansell, G. L.; M'arka, S.; Martinez, B.; Martinovic, K.; Martynov, D. V.; Mason, K.; Matichard, F.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McIsaac, C.; McRae, T.; Mendell, G.; Merfeld, K.; Merilh, E. L.; Meyers, P. M.; Meylahn, F.; Michaloliakos, I.; Middleton, H.; Mills, J. C.; Mistry, T.; Mittleman, R.; Moreno, G.; Mow-Lowry, C. M.; Mozzon, S.; Mueller, L.; Mukund, N.; Mullavey, A.; Muth, J.; Nelson, T. J. N.; Neunzert, A.; Nichols, S.; Nitoglia, E.; Oberling, J.; Oh, J. J.; Oh, S. H.; Oram, Richard J.; Ormiston, R. G.; Ormsby, N.; Osthelder, C.; Ottaway, D. J.; Overmier, H.; Pai, A.; Palamos, J. R.; Pannarale, F.; Parker, W.; Patane, O.; Patel, M.; Payne, E.; Pele, A.; Penhorwood, R.; Perez, C. J.; Phukon, K. S.; Pillas, M.; Pirello, M.; Radkins, H.; Ramirez, K. E.; Richardson, J. W.; Riles, K.; Rink, K.; Robertson, N. A.; Rollins, J. G.; Romel, C. L.; Romie, J. H.; Ross, M. P.; Ryan, K.; Sadecki, T.; Sakellariadou, M.; Sanchez, E. J.; Sanchez, L. E.; Sandles, L.; Saravanan, T. R.; Savage, R. L.; Schaetzl, D.; Schnabel, R.; Schwartz, E.; Sellers, D.; Shaffer, T.; Sigg, D.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Soni, K.; Sorazu, B.; Spencer, A. P.; Strain, K. A.; Strom, D.; Sun, L.; Szczepa'nczyk, M. J.; Tasson, J.; Tenorio, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Toland, K.; Torrie, C. I.; Tran, A.; Traylor, G.; Trevor, M.; Tse, M.; Vajente, G.; Remortel, N. van; Vander-Hyde, D. C.; Vargas, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Viets, A. D.; Villa-Ortega, V.; Vo, T.; Vorvick, C.; Wade, M.; Wallace, G. S.; Ward, R. L.; Warner, J.; Weaver, B.; Weinstein, A. J.; Weiss, R.; Wette, K.; White, D. D.; White, L. V.; Whittle, C.; Williamson, A. R.; Willke, B.; Wipf, C. C.; Xiao, L.; Xu, R.; Yamamoto, H.; Yu, Hang; Yu, Haocun; Zhang, L.; Zheng, Y.; Zucker, M. E.; Zweizig, J.
Title: LIGO Detector Characterization in the Second and Third Observing Runs
  • Cord-id: kv0wtlp7
  • Document date: 2021_1_27
  • ID: kv0wtlp7
    Snippet: The characterization of the Advanced LIGO detectors in the second and third observing runs has increased the sensitivity of the instruments, allowing for a higher number of detectable gravitational-wave signals, and provided confirmation of all observed gravitational-wave events. In this work, we present the methods used to characterize the LIGO detectors and curate the publicly available datasets, including the LIGO strain data and data quality products. We describe the essential role of these
    Document: The characterization of the Advanced LIGO detectors in the second and third observing runs has increased the sensitivity of the instruments, allowing for a higher number of detectable gravitational-wave signals, and provided confirmation of all observed gravitational-wave events. In this work, we present the methods used to characterize the LIGO detectors and curate the publicly available datasets, including the LIGO strain data and data quality products. We describe the essential role of these datasets in LIGO-Virgo Collaboration analyses of gravitational-waves from both transient and persistent sources and include details on the provenance of these datasets in order to support analyses of LIGO data by the broader community. Finally, we explain anticipated changes in the role of detector characterization and current efforts to prepare for the high rate of gravitational-wave alerts and events in future observing runs.

    Search related documents:
    Co phrase search for related documents
    • absence presence and active work: 1
    • absence presence and additional information: 1, 2, 3
    • absence presence and additional source: 1, 2
    • absence presence and additional system: 1
    • absence presence and long period: 1, 2, 3, 4, 5
    • absence presence and low duration: 1, 2
    • absence presence and low energy: 1
    • absence presence and low frequency: 1, 2, 3, 4, 5, 6
    • absence presence and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
    • absence presence and machine learning framework: 1
    • absence presence and machine learning method: 1