Author: Zhang, Zheng; Cai, Zena; Tan, Zhiying; Lu, Congyu; Jiang, Taijiao; Zhang, Gaihua; Peng, Yousong
Title: Rapid identification of humanâ€infecting viruses Cord-id: mpp3ctem Document date: 2019_8_12
ID: mpp3ctem
Snippet: Viruses have caused much mortality and morbidity to humans and pose a serious threat to global public health. The virome with the potential of human infection is still far from complete. Novel viruses have been discovered at an unprecedented pace as the rapid development of viral metagenomics. However, there is still a lack of methodology for rapidly identifying novel viruses with the potential of human infection. This study built several machine learning models to discriminate humanâ€infecting
Document: Viruses have caused much mortality and morbidity to humans and pose a serious threat to global public health. The virome with the potential of human infection is still far from complete. Novel viruses have been discovered at an unprecedented pace as the rapid development of viral metagenomics. However, there is still a lack of methodology for rapidly identifying novel viruses with the potential of human infection. This study built several machine learning models to discriminate humanâ€infecting viruses from other viruses based on the frequency of kâ€mers in the viral genomic sequences. The kâ€nearest neighbor (KNN) model can predict the humanâ€infecting viruses with an accuracy of over 90%. The performance of this KNN model built on the short contigs (≥1 kb) is comparable to those built on the viral genomes. We used a reported human blood virome to further validate this KNN model with an accuracy of over 80% based on very short raw reads (150 bp). Our work demonstrates a conceptual and generic protocol for the discovery of novel humanâ€infecting viruses in viral metagenomics studies.
Search related documents:
Co phrase search for related documents- logistic regression and lr logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- logistic regression and lr logistic regression rf random forest: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- logistic regression and machine learn: 1
- logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- logistic regression and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- logistic regression and machine learning model predictive performance: 1
- lr logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- lr logistic regression and machine learning model: 1, 2, 3, 4, 5, 6, 7
- lr logistic regression rf random forest and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- lr logistic regression rf random forest and machine learning model: 1, 2, 3, 4
Co phrase search for related documents, hyperlinks ordered by date