Selected article for: "antiviral therapeutic and available drug"

Author: Zhou, Yanchen; Agudelo, Juliet; Lu, Kai; Goetz, David H.; Hansell, Elizabeth; Chen, Yen Ting; Roush, William R.; McKerrow, James; Craik, Charles S.; Amberg, Sean M.; Simmons, Graham
Title: Inhibitors of SARS-CoV Entry - Identification using an Internally-Controlled Dual Envelope Pseudovirion Assay
  • Cord-id: mtf7k4t8
  • Document date: 2011_11_1
  • ID: mtf7k4t8
    Snippet: Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) emerged as the causal agent of an endemic atypical pneumonia, infecting thousands of people worldwide. Although a number of promising potential vaccines and therapeutic agents for SARS-CoV have been described, no effective antiviral drug against SARS-CoV is currently available. The intricate, sequential nature of the viral entry process provides multiple valid targets for drug development. Here, we describe a rapid and safe cell
    Document: Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) emerged as the causal agent of an endemic atypical pneumonia, infecting thousands of people worldwide. Although a number of promising potential vaccines and therapeutic agents for SARS-CoV have been described, no effective antiviral drug against SARS-CoV is currently available. The intricate, sequential nature of the viral entry process provides multiple valid targets for drug development. Here, we describe a rapid and safe cell-based high-throughput screening system, Dual Envelope Pseudovirion (DEP) Assay, for specifically screening inhibitors of viral entry. The assay system employs a novel dual envelope strategy, using lentiviral pseudovirions as targets whose entry is driven by the SARS-CoV Spike glycoprotein. A second, unrelated viral envelope is used as an internal control to reduce the number of false positives. As an example of the power of this assay a class of inhibitors is reported with the potential to inhibit SARS-CoV at two steps of the replication cycle, viral entry and particle assembly. This assay system can be easily adapted to screen entry inhibitors against other viruses with the careful selection of matching partner virus envelopes.

    Search related documents:
    Co phrase search for related documents
    • active cell and live virus: 1, 2
    • active cell and luciferase gene: 1
    • active cell and luciferase reporter: 1, 2
    • live virus and luciferase gene: 1, 2, 3, 4, 5
    • live virus and luciferase reporter: 1, 2, 3, 4, 5, 6
    • luc reporter and luciferase gene: 1, 2, 3, 4, 5, 6, 7
    • luc reporter and luciferase reporter: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
    • luc reporter and luciferase reporter expression: 1