Author: Ma, Zhanshan
Title: Coupling Power Laws Offers a Powerful Method for Problems such as Biodiversity and COVID-19 Fatality Predictions Cord-id: n8zu0p8h Document date: 2021_5_23
ID: n8zu0p8h
Snippet: Power laws have been found to describe a wide variety of natural (physical, biological, astronomic, meteorological, geological) and man-made (social, financial, computational) phenomena over a wide range of magnitudes, although their underlying mechanisms are not always clear. In statistics, power law distribution is often found to fit data exceptionally well when the normal (Gaussian) distribution fails. Nevertheless, predicting power law phenomena is notoriously difficult because some of its i
Document: Power laws have been found to describe a wide variety of natural (physical, biological, astronomic, meteorological, geological) and man-made (social, financial, computational) phenomena over a wide range of magnitudes, although their underlying mechanisms are not always clear. In statistics, power law distribution is often found to fit data exceptionally well when the normal (Gaussian) distribution fails. Nevertheless, predicting power law phenomena is notoriously difficult because some of its idiosyncratic properties such as lack of well-defined average value, and potentially unbounded variance. TPL (Taylor power law), a power law first discovered to characterize the spatial and/or temporal distribution of biological populations and recently extended to describe the spatiotemporal heterogeneities (distributions) of human microbiomes and other natural and artificial systems such as fitness distribution in computational (artificial) intelligence. The power law with exponential cutoff (PLEC) is a variant of power-law function that tapers off the exponential growth of power-law function ultimately and can be particularly useful for certain predictive problems such as biodiversity estimation and turning-point prediction for COVID-19 infection/fatality. Here, we propose coupling (integration) of TPL and PLEC to offer improved prediction quality of certain power-law phenomena. The coupling takes advantages of variance prediction using TPL and the asymptote estimation using PLEC and delivers confidence interval for the asymptote. We demonstrate the integrated approach to the estimation of potential (dark) biodiversity and turning point of COVID-19 fatality. We expect this integrative approach should have wide applications given the duel relationship between power law and normal statistical distributions.
Search related documents:
Co phrase search for related documents- accrual diversity and mad maximal accrual diversity: 1
Co phrase search for related documents, hyperlinks ordered by date