Author: Wan, R.; Zhang, X.; Song, R.
Title: Multi-Objective Model-based Reinforcement Learning for Infectious Disease Control Cord-id: nxxj9j8r Document date: 2021_1_1
ID: nxxj9j8r
Snippet: Severe infectious diseases such as the novel coronavirus (COVID-19) pose a huge threat to public health. Stringent control measures, such as school closures and stay-at-home orders, while having significant effects, also bring huge economic losses. In the face of an emerging infectious disease, a crucial question for policymakers is how to make the trade-off and implement the appropriate interventions timely given the huge uncertainty. In this work, we propose a Multi-Objective Model-based Reinf
Document: Severe infectious diseases such as the novel coronavirus (COVID-19) pose a huge threat to public health. Stringent control measures, such as school closures and stay-at-home orders, while having significant effects, also bring huge economic losses. In the face of an emerging infectious disease, a crucial question for policymakers is how to make the trade-off and implement the appropriate interventions timely given the huge uncertainty. In this work, we propose a Multi-Objective Model-based Reinforcement Learning framework to facilitate data-driven decision-making and minimize the overall long-term cost. Specifically, at each decision point, a Bayesian epidemiological model is first learned as the environment model, and then the proposed model-based multi-objective planning algorithm is applied to find a set of Pareto-optimal policies. This framework, combined with the prediction bands for each policy, provides a real-time decision support tool for policymakers. The application is demonstrated with the spread of COVID-19 in China. © 2021 ACM.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date