Author: Zhang, Yong; Zhao, Wanjun; Mao, Yonghong; Chen, Yaohui; Hu, Liqiang; Zhu, Jingqiang; Gong, Meng; Cheng, Jingqiu; Yang, Hao
Title: Mucin-type O-glycosylation Landscapes of SARS-CoV-2 Spike Proteins Cord-id: owkxc4cl Document date: 2020_7_30
ID: owkxc4cl
Snippet: The densely glycosylated spike (S) proteins that are highly exposed on the surface of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) facilitate viral attachment, entry, and membrane fusion. We have previously reported all the 22 N-glycosites and site-specific N-glycans in the S protein protomer. Herein, we report the comprehensive and precise site-specific O-glycosylation landscapes of SARS-CoV-2 S proteins, which were characterized using high-resolution mass spectrometry. Followin
Document: The densely glycosylated spike (S) proteins that are highly exposed on the surface of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) facilitate viral attachment, entry, and membrane fusion. We have previously reported all the 22 N-glycosites and site-specific N-glycans in the S protein protomer. Herein, we report the comprehensive and precise site-specific O-glycosylation landscapes of SARS-CoV-2 S proteins, which were characterized using high-resolution mass spectrometry. Following digestion using trypsin and trypsin/Glu-C, and de-N-glycosylation using PNGase F, we determined the mucin-type (GalNAc-type) O-glycosylation pattern of S proteins, including unambiguous O-glycosites and the 6 most common O-glycans occupying them, via Byonic identification and manual validation. Finally, 43 O-glycosites were identified in the insect cell-expressed S protein. Most glycosites were modified by non-sialylated O-glycans such as HexNAc(1) and HexNAc(1)Hex(1). In contrast, 30 O-glycosites were identified in the human cell-expressed S protein S1 subunit. Most glycosites were modified by sialylated O-glycans such as HexNAc(1)Hex(1)NeuAc(1) and HexNAc(1)Hex(1)NeuAc(2). Our results are the first to reveal that the SARS-CoV-2 S protein is a mucin-type glycoprotein; clustered O-glycans often occur in the N- and the C-termini of the S protein, and the O-glycosite and O-glycan compositions vary with the host cell type. These site-specific O-glycosylation landscapes of the SARS-CoV-2 S protein are expected to provide novel insights into the viral binding mechanism and present a strategy for the development of vaccines and targeted drugs.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date