Author: Rojas, J. Maurice
Title: Counting Real Roots in Polynomial-Time for Systems Supported on Circuits Cord-id: rst8ko20 Document date: 2020_12_9
ID: rst8ko20
Snippet: Suppose $A=\{a_1,\ldots,a_{n+2}\}\subset\mathbb{Z}^n$ has cardinality $n+2$, with all the coordinates of the $a_j$ having absolute value at most $d$, and the $a_j$ do not all lie in the same affine hyperplane. Suppose $F=(f_1,\ldots,f_n)$ is an $n\times n$ polynomial system with generic integer coefficients at most $H$ in absolute value, and $A$ the union of the sets of exponent vectors of the $f_i$. We give the first algorithm that, for any fixed $n$, counts exactly the number of real roots of
Document: Suppose $A=\{a_1,\ldots,a_{n+2}\}\subset\mathbb{Z}^n$ has cardinality $n+2$, with all the coordinates of the $a_j$ having absolute value at most $d$, and the $a_j$ do not all lie in the same affine hyperplane. Suppose $F=(f_1,\ldots,f_n)$ is an $n\times n$ polynomial system with generic integer coefficients at most $H$ in absolute value, and $A$ the union of the sets of exponent vectors of the $f_i$. We give the first algorithm that, for any fixed $n$, counts exactly the number of real roots of $F$ in in time polynomial in $\log(dH)$.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date