Selected article for: "absolute value and time number"

Author: Rojas, J. Maurice
Title: Counting Real Roots in Polynomial-Time for Systems Supported on Circuits
  • Cord-id: rst8ko20
  • Document date: 2020_12_9
  • ID: rst8ko20
    Snippet: Suppose $A=\{a_1,\ldots,a_{n+2}\}\subset\mathbb{Z}^n$ has cardinality $n+2$, with all the coordinates of the $a_j$ having absolute value at most $d$, and the $a_j$ do not all lie in the same affine hyperplane. Suppose $F=(f_1,\ldots,f_n)$ is an $n\times n$ polynomial system with generic integer coefficients at most $H$ in absolute value, and $A$ the union of the sets of exponent vectors of the $f_i$. We give the first algorithm that, for any fixed $n$, counts exactly the number of real roots of
    Document: Suppose $A=\{a_1,\ldots,a_{n+2}\}\subset\mathbb{Z}^n$ has cardinality $n+2$, with all the coordinates of the $a_j$ having absolute value at most $d$, and the $a_j$ do not all lie in the same affine hyperplane. Suppose $F=(f_1,\ldots,f_n)$ is an $n\times n$ polynomial system with generic integer coefficients at most $H$ in absolute value, and $A$ the union of the sets of exponent vectors of the $f_i$. We give the first algorithm that, for any fixed $n$, counts exactly the number of real roots of $F$ in in time polynomial in $\log(dH)$.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1