Selected article for: "acute respiratory syndrome and adem acute encephalitis"

Author: Satheesh, Noothan J.; Salloum-Asfar, Salam; Abdulla, Sara A.
Title: The Potential Role of COVID-19 in the Pathogenesis of Multiple Sclerosis—A Preliminary Report
  • Cord-id: sazkbju7
  • Document date: 2021_10_17
  • ID: sazkbju7
    Snippet: Coronavirus 2019 (COVID-19) is an infectious respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that mainly affects the lungs. COVID-19 symptoms include the presence of fevers, dry coughs, fatigue, sore throat, headaches, diarrhea, and a loss of taste or smell. However, it is understood that SARS-CoV-2 is neurotoxic and neuro-invasive and could enter the central nervous system (CNS) via the hematogenous route or via the peripheral nerve route and causes en
    Document: Coronavirus 2019 (COVID-19) is an infectious respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that mainly affects the lungs. COVID-19 symptoms include the presence of fevers, dry coughs, fatigue, sore throat, headaches, diarrhea, and a loss of taste or smell. However, it is understood that SARS-CoV-2 is neurotoxic and neuro-invasive and could enter the central nervous system (CNS) via the hematogenous route or via the peripheral nerve route and causes encephalitis, encephalopathy, and acute disseminated encephalomyelitis (ADEM) in COVID-19 patients. This review discusses the possibility of SARS-CoV-2-mediated Multiple Sclerosis (MS) development in the future, comparable to the surge in Parkinson’s disease cases following the Spanish Flu in 1918. Moreover, the SARS-CoV-2 infection is associated with a cytokine storm. This review highlights the impact of these modulated cytokines on glial cell interactions within the CNS and their role in potentially prompting MS development as a secondary disease by SARS-CoV-2. SARS-CoV-2 is neurotropic and could interfere with various functions of neurons leading to MS development. The influence of neuroinflammation, microglia phagocytotic capabilities, as well as hypoxia-mediated mitochondrial dysfunction and neurodegeneration, are mechanisms that may ultimately trigger MS development.

    Search related documents:
    Co phrase search for related documents
    • activate innate immune system and acute respiratory distress: 1
    • activate innate immune system and acute respiratory distress syndrome: 1
    • activate innate immune system and adaptive immune system: 1, 2
    • activate innate immune system and adaptive immune system activate: 1, 2
    • activation inflammation and acute encephalitis: 1
    • activation inflammation and acute infection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • activation inflammation and acute respiratory distress: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • activation inflammation and acute respiratory distress syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • activation inflammation and adaptive immune cell: 1, 2
    • activation inflammation and adaptive immune system: 1, 2
    • acute cerebrovascular disease and adem acute: 1
    • acute encephalitis and adem acute: 1, 2, 3, 4, 5, 6, 7
    • acute encephalomyelitis and adaptive immune system: 1
    • acute encephalomyelitis and adem acute: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute encephalomyelitis and adem develop: 1
    • acute infection and adaptive immune cell: 1, 2
    • acute infection and adaptive immune system: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
    • acute infection and adem acute: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
    • acute respiratory distress and adaptive immune cell: 1, 2, 3, 4