Author: Vaid, Akhil; Jaladanki, Suraj K; Xu, Jie; Teng, Shelly; Kumar, Arvind; Lee, Samuel; Somani, Sulaiman; Paranjpe, Ishan; De Freitas, Jessica K; Wanyan, Tingyi; Johnson, Kipp W; Bicak, Mesude; Klang, Eyal; Kwon, Young Joon; Costa, Anthony; Zhao, Shan; Miotto, Riccardo; Charney, Alexander W; Böttinger, Erwin; Fayad, Zahi A; Nadkarni, Girish N; Wang, Fei; Glicksberg, Benjamin S
Title: Federated Learning of Electronic Health Records to Improve Mortality Prediction in Hospitalized Patients With COVID-19: Machine Learning Approach Cord-id: um702xoy Document date: 2021_1_27
ID: um702xoy
Snippet: BACKGROUND: Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. OBJECTIVE: We aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days. METHODS: Patient dat
Document: BACKGROUND: Machine learning models require large datasets that may be siloed across different health care institutions. Machine learning studies that focus on COVID-19 have been limited to single-hospital data, which limits model generalizability. OBJECTIVE: We aimed to use federated learning, a machine learning technique that avoids locally aggregating raw clinical data across multiple institutions, to predict mortality in hospitalized patients with COVID-19 within 7 days. METHODS: Patient data were collected from the electronic health records of 5 hospitals within the Mount Sinai Health System. Logistic regression with L1 regularization/least absolute shrinkage and selection operator (LASSO) and multilayer perceptron (MLP) models were trained by using local data at each site. We developed a pooled model with combined data from all 5 sites, and a federated model that only shared parameters with a central aggregator. RESULTS: The LASSO(federated) model outperformed the LASSO(local) model at 3 hospitals, and the MLP(federated) model performed better than the MLP(local) model at all 5 hospitals, as determined by the area under the receiver operating characteristic curve. The LASSO(pooled) model outperformed the LASSO(federated) model at all hospitals, and the MLP(federated) model outperformed the MLP(pooled) model at 2 hospitals. CONCLUSIONS: The federated learning of COVID-19 electronic health record data shows promise in developing robust predictive models without compromising patient privacy.
Search related documents:
Co phrase search for related documents- absolute lasso model selection shrinkage operator and machine learning: 1, 2, 3, 4
- absolute lasso model selection shrinkage operator and machine learning model: 1, 2
- accurate prediction and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30
- accurate prediction and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- accurate prediction and machine learning application: 1, 2
- accurate prediction and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- additional population and logistic regression: 1, 2, 3, 4, 5, 6
- load balancing and machine learning: 1, 2
- local model and logistic regression: 1, 2, 3, 4
- local model and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
- local model and machine learning application: 1
- local model and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8
- locally train and machine learning: 1
- locally train model and machine learning: 1
Co phrase search for related documents, hyperlinks ordered by date