Author: V’kovski, Philip; Gultom, Mitra; Kelly, Jenna N.; Steiner, Silvio; Russeil, Julie; Mangeat, Bastien; Cora, Elisa; Pezoldt, Joern; Holwerda, Melle; Kratzel, Annika; Laloli, Laura; Wider, Manon; Portmann, Jasmine; Tran, Thao; Ebert, Nadine; Stalder, Hanspeter; Hartmann, Rune; Gardeux, Vincent; Alpern, Daniel; Deplancke, Bart; Thiel, Volker; Dijkman, Ronald
                    Title: Disparate temperature-dependent virus–host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium  Cord-id: vnum60aw  Document date: 2021_3_29
                    ID: vnum60aw
                    
                    Snippet: Since its emergence in December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally and become a major public health burden. Despite its close phylogenetic relationship to SARS-CoV, SARS-CoV-2 exhibits increased human-to-human transmission dynamics, likely due to efficient early replication in the upper respiratory epithelium of infected individuals. Since different temperatures encountered in the human upper and lower respiratory tract (33°C and 37°C, respec
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: Since its emergence in December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally and become a major public health burden. Despite its close phylogenetic relationship to SARS-CoV, SARS-CoV-2 exhibits increased human-to-human transmission dynamics, likely due to efficient early replication in the upper respiratory epithelium of infected individuals. Since different temperatures encountered in the human upper and lower respiratory tract (33°C and 37°C, respectively) have been shown to affect the replication kinetics of several respiratory viruses, as well as host innate immune response dynamics, we investigated the impact of temperature on SARS-CoV-2 and SARS-CoV infection using the primary human airway epithelial cell culture model. SARS-CoV-2, in contrast to SARS-CoV, replicated to higher titers when infections were performed at 33°C rather than 37°C. Although both viruses were highly sensitive to type I and type III interferon pretreatment, a detailed time-resolved transcriptome analysis revealed temperature-dependent interferon and pro-inflammatory responses induced by SARS-CoV-2 that were inversely proportional to its replication efficiency at 33°C or 37°C. These data provide crucial insight on pivotal virus–host interaction dynamics and are in line with characteristic clinical features of SARS-CoV-2 and SARS-CoV, as well as their respective transmission efficiencies.
 
  Search related documents: 
                                Co phrase  search for related documents- accumulate body and acute respiratory syndrome coronavirus: 1
  - acute respiratory and additional mechanistic: 1
  - acute respiratory and additional study: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39
  - acute respiratory and low expression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46
  - acute respiratory and low expression level: 1, 2, 3, 4, 5, 6
  - acute respiratory and low respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
  - acute respiratory and low respiratory tract: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
  - acute respiratory and luminal surface: 1, 2, 3
  - acute respiratory syndrome coronavirus and additional mechanistic: 1
  - acute respiratory syndrome coronavirus and additional study: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
  - acute respiratory syndrome coronavirus and low expression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35
  - acute respiratory syndrome coronavirus and low expression level: 1, 2, 3, 4, 5, 6
  - acute respiratory syndrome coronavirus and low respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65
  - acute respiratory syndrome coronavirus and low respiratory tract: 1, 2, 3, 4, 5
  - acute respiratory syndrome coronavirus and luminal surface: 1, 2, 3
  - additional study and low expression: 1
  - macherey nagel and madison promega: 1
  
 
                                Co phrase  search for related documents, hyperlinks ordered by date