Author: Giovani L. Vasconcelos; Antônio M. S. Macêdo; Raydonal Ospina; Francisco A. G. Almeida; Gerson C. Duarte-Filho; Inês C. L. Souza
Title: Modelling fatality curves of COVID-19 and the effectiveness of intervention strategies Document date: 2020_4_6
ID: 35b3efom_11
Snippet: where C(t) is the cumulative number of cases at time t, r is the growth rate at the early stage, K is the final epidemic size, and the parameter α measures the asymmetry with respect to the s-shaped dynamics of the standard logistic model, which is recovered for α = 1. It is worth to point out that the Richards model has an intrinsic connection to the SIR epidemic model, see, e.g., [20] , with the advantage that it allows for an exact solution .....
Document: where C(t) is the cumulative number of cases at time t, r is the growth rate at the early stage, K is the final epidemic size, and the parameter α measures the asymmetry with respect to the s-shaped dynamics of the standard logistic model, which is recovered for α = 1. It is worth to point out that the Richards model has an intrinsic connection to the SIR epidemic model, see, e.g., [20] , with the advantage that it allows for an exact solution (see below), which makes the data analysis much simpler. As already mentioned, here we shall apply the RGM to the fatality curves of COVID-19, so that C(t) will represent the cumulative numbers of deaths in a given country at time t, where t will be counted in days from the first death. Equation (1) must be supplemented with a boundary condition. Here it is convenient to choose
Search related documents:
Co phrase search for related documents- boundary condition and data analysis: 1, 2, 3
- boundary condition and early stage: 1
- case cumulative number and cumulative number: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58
- case cumulative number and data analysis: 1, 2, 3, 4
- case cumulative number and epidemic model: 1, 2, 3, 4, 5, 6, 7, 8
- cumulative number and data analysis: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39
- cumulative number and day count: 1, 2
- cumulative number and early stage: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35
- cumulative number and early stage growth rate: 1
- cumulative number and epidemic model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
- data analysis and day count: 1
- data analysis and early stage: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- data analysis and early stage growth rate: 1
- data analysis and epidemic model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61
- day count and death day count: 1
- day count and early stage: 1, 2
- day count and epidemic model: 1, 2
- death day count and epidemic model: 1
- early stage and epidemic model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43
Co phrase search for related documents, hyperlinks ordered by date