Author: Refaey, Rana H.; El-Ashrey, Mohamed K.; Nissan, Yassin M.
Title: Repurposing of renin inhibitors as SARS-COV-2 main protease inhibitors: A computational study Cord-id: yo5pg6ml Document date: 2020_12_24
ID: yo5pg6ml
Snippet: The COVID-19 pandemic has urged for the repurposing of existing drugs for rapid management and treatment. Renin inhibitors down regulation of ACE2, which is an essential receptor for SARS-CoV-2 infection that is responsible for COVID-19, in addition to their ability to act as protease inhibitors were encouraging aspects for their investigation as possible inhibitors of main protease of SARS-CoV-2 via computational studies. A Pharmacophore model was generated using the newly released SARS-COV-2 m
Document: The COVID-19 pandemic has urged for the repurposing of existing drugs for rapid management and treatment. Renin inhibitors down regulation of ACE2, which is an essential receptor for SARS-CoV-2 infection that is responsible for COVID-19, in addition to their ability to act as protease inhibitors were encouraging aspects for their investigation as possible inhibitors of main protease of SARS-CoV-2 via computational studies. A Pharmacophore model was generated using the newly released SARS-COV-2 main protease inhibitors. Virtual screening was performed on renin inhibitors, and Drug likeness filter identified remikiren and 0IU as hits. Molecular docking for both compounds showed that the orally active renin inhibitor remikiren (Ro 42–5892) of Hoffmann–La Roche exhibited good molecular interaction with Cys145 and His41 in the catalytic site of SARS-CoV-2 main protease. Molecular dynamics simulation suggested that the drug is stable in the active site of the enzyme.
Search related documents:
Co phrase search for related documents- ace enzyme and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- ace enzyme and low number: 1
- ace inhibitor and active site: 1, 2
- ace inhibitor and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
- active pocket and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- active site and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- active site and additional target: 1, 2, 3, 4
- active site and adme property: 1
- active site and long range: 1, 2, 3, 4, 5
- active site and low bioavailability: 1, 2, 3
- active site and low number: 1
- active site ligand binding and acute respiratory syndrome: 1, 2, 3, 4
- acute respiratory syndrome and additional hydrogen bond: 1
- acute respiratory syndrome and additional target: 1, 2, 3, 4, 5
- acute respiratory syndrome and adme property: 1, 2, 3, 4, 5
- acute respiratory syndrome and long range: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Co phrase search for related documents, hyperlinks ordered by date