Author: Bojkova, Denisa; Costa, Rui; Bechtel, Marco; Ciesek, Sandra; Michaelis, Martin; Cinatl, Jindrich
Title: Targeting pentose phosphate pathway for SARS-CoV-2 therapy Cord-id: z2xqhaf1 Document date: 2020_8_21
ID: z2xqhaf1
Snippet: It becomes more and more obvious that deregulation of host metabolism play an important role in SARS-CoV-2 pathogenesis with implication for increased risk of severe course of COVID-19. Furthermore, it is expected that COVID-19 patients recovered from severe disease may experience long-term metabolic disorders. Thereby understanding the consequences of SARS-CoV-2 infection on host metabolism can facilitate efforts for effective treatment option. We have previously shown that SARS-CoV-2-infected
Document: It becomes more and more obvious that deregulation of host metabolism play an important role in SARS-CoV-2 pathogenesis with implication for increased risk of severe course of COVID-19. Furthermore, it is expected that COVID-19 patients recovered from severe disease may experience long-term metabolic disorders. Thereby understanding the consequences of SARS-CoV-2 infection on host metabolism can facilitate efforts for effective treatment option. We have previously shown that SARS-CoV-2-infected cells undergo a shift towards glycolysis and that 2-deoxy-D-glucose (2DG) inhibits SARS-CoV-2 replication. Here, we show that also pentose phosphate pathway (PPP) is remarkably deregulated. Since PPP supplies ribonucleotides for SARS-CoV-2 replication, this could represent an attractive target for an intervention. On that account, we employed the transketolase inhibitor benfooxythiamine and showed dose-dependent inhibition of SARS-CoV-2 in non-toxic concentrations. Importantly, the antiviral efficacy of benfooxythiamine was further increased in combination with 2DG.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date