Author: Wang, Guangchuan; Wang, Hong-Jiang; Zhou, Hangyu; Nian, Qing-Gong; Song, Zhiyong; Deng, Yong-Qiang; Wang, Xiaoyu; Zhu, Shun-Ya; Li, Xiao-Feng; Qin, Cheng-Feng; Tang, Ruikang
Title: Hydrated silica exterior produced by biomimetic silicification confers viral vaccine heat-resistance. Cord-id: z9cw3316 Document date: 2015_1_1
ID: z9cw3316
Snippet: Heat-lability is a key roadblock that strangles the widespread applications of many biological products. In nature, archaeal and extremophilic organisms utilize amorphous silica as a protective biomineral and exhibit considerable thermal tolerance. Here we present a bioinspired approach to generate thermostable virus by introducing an artificial hydrated silica exterior on individual virion. Similar to thermophiles, silicified viruses can survive longer at high temperature than their wild-type r
Document: Heat-lability is a key roadblock that strangles the widespread applications of many biological products. In nature, archaeal and extremophilic organisms utilize amorphous silica as a protective biomineral and exhibit considerable thermal tolerance. Here we present a bioinspired approach to generate thermostable virus by introducing an artificial hydrated silica exterior on individual virion. Similar to thermophiles, silicified viruses can survive longer at high temperature than their wild-type relatives. Virus inactivation assays showed that silica hydration exterior of the modified virus effectively prolonged infectivity of viruses by ∼ 10-fold at room temperature, achieving a similar result as that obtained by storing native ones at 4 °C. Mechanistic studies indicate that amorphous silica nanoclusters stabilize the inner virion structure by forming a layer that restricts molecular mobility, acting as physiochemical nanoanchors. Notably, we further evaluate the potential application of this biomimetic strategy in stabilizing clinically approved vaccine, and the silicified polio vaccine that can retain 90% potency after the storage at room temperature for 35 days was generated by this biosilicification approach and validated with in vivo experiments. This approach not only biomimetically connects inorganic material and living virus but also provides an innovative resolution to improve the thermal stability of biological agents using nanomaterials.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date