Author: Zheng, Ruiyong Zheng Yongguo Dong-Ye Changlei
Title: Improved 3D U-Net for COVID-19 Chest CT Image Segmentation Cord-id: amk2rumx Document date: 2021_1_1
ID: amk2rumx
Snippet: Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide. The rapid and accurate automatic segmentation of COVID-19 infected areas using chest computed tomography (CT) scans is critical for assessing disease progression. However, infected areas have irregular sizes and shapes. Furthermore, there are large differences between image features. We propose a convolutional neural network, named 3D CU-Net, to automatically identify COVID-19 infected areas from 3D chest CT images by extracting r
Document: Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide. The rapid and accurate automatic segmentation of COVID-19 infected areas using chest computed tomography (CT) scans is critical for assessing disease progression. However, infected areas have irregular sizes and shapes. Furthermore, there are large differences between image features. We propose a convolutional neural network, named 3D CU-Net, to automatically identify COVID-19 infected areas from 3D chest CT images by extracting rich features and fusing multiscale global information. 3D CU-Net is based on the architecture of 3D U-Net. We propose an attention mechanism for 3D CU-Net to achieve local cross-channel information interaction in an encoder to enhance different levels of the feature representation. At the end of the encoder, we design a pyramid fusion module with expanded convolutions to fuse multiscale context information from high-level features. The Tversky loss is used to resolve the problems of the irregular size and uneven distribution of lesions. Experimental results show that 3D CU-Net achieves excellent segmentation performance, with Dice similarity coefficients of 96.3% and 77.8% in the lung and COVID-19 infected areas, respectively. 3D CU-Net has high potential to be used for diagnosing COVID-19. [ABSTRACT FROM AUTHOR] Copyright of Scientific Programming is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date